Неорганические полимеры

Применение полимеров в быту

Применение этих соединений повсеместно. Мало можно вспомнить областей промышленности, народного хозяйства, науки и техники, в которых не нужен был бы полимер. Что это такое — полимерное хозяйство и повсеместное применение, и чем оно исчерпывается?

  1. Химическая промышленность (производство пластмасс, дубильных веществ, синтез важнейших органических соединений).
  2. Машиностроение, авиастроение, нефтеперерабатывающие предприятия.
  3. Медицина и фармакология.
  4. Получение красителей и взрывчатых веществ, пестицидов и гербицидов, инсектицидов сельского хозяйства.
  5. Строительная промышленность (легирование сталей, конструкции звуко- и теплоизоляции, строительные материалы).
  6. Изготовление игрушек, посуды, труб, окон, предметов быта и домашней утвари.

Химия полимеров позволяет получать все новые и новые, совершенно универсальные по свойствам материалы, равных которым нет ни среди металлов, ни среди дерева или стекла.

Где применяются полимеры

Область применения полимерных материалов очень широка. Сейчас можно с уверенностью сказать – они используются в промышленности и производстве практически в любой сфере. Благодаря своим качествам полимеры полностью заменили природные материалы, существенно уступающие им по характеристикам. Поэтому стоит рассмотреть свойства полимеров и области их применения.

По классификации материалы можно разделить на:

Оглядевшись вокруг, мы можем увидеть огромное количество изделий из синтетических материалов. Это детали бытовых приборов, ткани, игрушки, кухонные принадлежности и даже бытовая химия. По сути – это огромный ряд изделий от обычной пластмассовой расчески до стирального порошка.

Такое широкое использование обусловлено низкой стоимостью производства и высокими качественными характеристиками. Изделия прочны, гигиеничны, не содержат вредных для организма человека компонентов и универсальны. Даже обычные капроновые колготки изготовлены из полимерных составляющих. Поэтому полимеры в быту применяются гораздо чаще, чем натуральные материалы. Они существенно превосходят их по качествам и обеспечивают низкую цену изделия.

Примеры:

  • пластиковая посуда и упаковка;
  • части различных бытовых приборов;
  • синтетические ткани;
  • игрушки;
  • кухонные принадлежности;
  • изделия для санузлов.

Любая вещь из пластика или с включением синтетических волокон изготавливается на основе полимеров, так что перечень примеров может быть бесконечным.

Органические полимеры

Органическими называют обширный класс веществ, содер­жащих в своей основе углерод. Кроме углерода в этих вещест­вах содержится обычно водород, кислород, азот, сера, фосфор. Соединения, в которых содержатся также и другие элементы, называют элементоорганическими. Органические вещества обладают молекулярной структу­рой, т. е. состоят из отдельных молекул, внутри которых атомы связаны преимущественно весьма прочными ковалентными свя­зями. Между собой моле­кулы связаны сравнительно слабыми поляризационными сила­ми.

Большинство органических веществ не содержит свободных электронов и ионов, поэтому они являются диэлектриками. Так как силы поляризационной связи между отдельными молекула­ми невелики, то органические вещества с малой молекулярной массой являются при обычной температуре газами или жидкостями. Вещества с более высокой молекулярной массой являются твердыми уже при обычной температуре.

Ввиду поляризационного характера связи, обусловливающего большие расстояния между молекулами, и малого атомного веса элементов, образующих органические соединения, они отличают­ся невысоким удельным весом. Поляризационный ха­рактер связи определяет также невысокую механическую прочность. Органические вещества сравнительно легкоплавки и за некото­рыми исключениями отличаются низкой нагревостойкостью. Подавляющее большинство из них горючи. Легкое горение органических веществ объясняется тем, что связи атомов углерода между собой и с водородом в молекулах органических веществ значительно менее прочным, чем связи углерода и водорода с кислородом. Поэтому при реакциях окисления выделяется большое коли­чество тепла, которое разлагает органические вещества перед горением, облегчая их реакцию с кислородом. Горению органи­ческих веществ благоприятствует и то, что конечные продукты их окисления — газы легко удаляются от очага горения и не препятствуют его развитию.

Легкая горючесть большинства органических материалов яв­ляется их существенным недостатком. Однако в последнее время получен ряд плохо горючих или негорючих элементоорганических соединений. Так, замена водорода органических веществ фтором практически полностью препятствует их воспламенению или го­рению. Хлор, вводимый в больших количествах в органические веще­ства, также препятствует их горению и гасит пламя, обрывая развитие цепных реакций горения. Существенно затрудняется горючесть и при образовании кремнийорганических соединений. Различия в свойствах отдельных органических веществ объяс­няются различиями в их составе и строении.

Особенно широкое распространение в качестве электроизоля­ционных материалов получили полимеры.

По происхождению полимеры могут быть природными мате­риалами (целлюлоза, натуральный каучук, янтарь и др.) или синтетическими продуктами (бакелит, полистирол, полиэтилен и др.). Они приобретают все возрастающее значение в технике и быту благодаря удачному сочетанию многих важных качеств, особенно у новых синтетических высокополимеров. Часто они отличаются высокими электроизоляционными свойствами в ши­роком диапазоне рабочих напряжений и частот (вплоть до СВЧ), при высокой влажности окружающей среды и в широком интер­вале рабочих температур. Они обладают также хорошими теп­ло- и звукоизоляционными свойствами. Как правило, не подвер­жены коррозии, гниению и во многих случаях отличаются высо­кой химической стойкостью.

Ввиду малой плотности, сочетающейся с достаточной проч­ностью, на основе полимеров можно получить материалы (пласт­массы, ткани) с высокой удельной прочностью. Многие полиме­ры отличаются ценными специальными свойствами: прозрачно­стью, радиопрозрачностью, диамагнетизмом, антифрикционны­ми свойствами, высокой эластичностью и т. д.

Большинство полимеров легко поддаются различным видам технологической обработки (литье, прессование, вытяжка, обработка резанием, распыление и т. д.) и на их основе производят весьма разнообразные по свойствам продукты: пластмассы и ре­зины, электроизоляционные лаки и лакокрасочные материалы, клеи, компаунды, волокнистые и пленочные материалы. Они находят широкое применение в промышленности и в быту.

 Большинство полимеров может быть получено из дешевого сырья — природных и попутных газов нефтедобычи и переработ­ки нефти, угля в сочетании с водой и воздухом. Поэтому про­изводство полимерных материалов развивается быстрыми тем­пами.

Неорганические полимер

Неорганические полимеры имеют неорганические основные цепи и не содержат органических боковых радикалов. Их классифицируют по тем же признакам, что и органические полимеры: па конфигурации – линейные, разветвленные и пространственные; по происхождению – природные и синтетические, по составу основной цепи – гомо – и гетероцепные. Неорганические гомо – и гетера атомные цепи способны образовывать элементы групп III – VI Периодической системы. Такие гетероатомные частично ионные связи обычно прочнее чисто ковалентных. В отличие от органических полимеров неорганические ВМС не имеют длинных цепей и соответственно для них не характерно эластичное состояние. Так как, кроме углерода, другие элементы не могут образовывать ненасыщенных соединений, то синтез неорганических полимеров осуществляется, главным образом, путем поли-конденсации. Некоторую способность образовывать гомоцепные неорганические полимеры имеют бор, сера, олово. Большинство же элементов образуют гетероцепные полимеры, и в основном трех мерной структуры. Наиболее типичными представителями гетеро-цепных неорганических полимеров являются оксиды, которые можно считать продуктами поликонденсацин гндроксидов.

Неорганические полимеры отличаются по химическим и физическим свойствам от органических или элементоорганических полимеров, прежде всего, вследствие различной электронной структуры главной цепи и отсутствия органических обрамляющих групп. Электронная структура определяет возможность образования цепей полимерной молекулы. Обрамляющие группы модифицируют электронную структуру, защищают главную цепь полимеров от атаки нуклеофильными или электрофильны-ми реагентами и определяют характер меж.

Неорганические полимеры отличаются от органических и элементоорганических полимеров высокоупорядоченной кристаллической структурой. Они имеют больший модуль упругости и обладают повышенной стойкостью к термической и термоокислительной деструкции. Их температуры размягчения и плавления, а также нагревостойкость и термостойкость значительно выше, чем органических и элементоорганических полимеров.

Неорганические полимеры, относящиеся к группе сетчатых, широко распространены в земной коре в виде минералов. Часть их перерабатывается и используется в виде неорганических стекол или керамических материалов.

Неорганические полимеры находят все более широкое применение в качестве высокотемпературных материалов: покрытий, волокон, наполнителей для пластиков. Прочность на растяжение волокна из АЬОз составляет 70500 кГ / см2, а волокно из ZrO2 выдерживает повторные нагревания до 2480 С.

Неорганические полимеры построены из неорганических цепей.

Неорганические полимеры обладают не только термостойкостью и твердостью, но и, подобно органическим, могут быть эластичными. Например, стеклянное волокно не горит, не гниет, не впитывает влагу, не боится действия большинства кислот и щелочей; или синтетический асбест, отличающийся от природного большим постоянством свойств и химического состава, а также более высокой термостойкостью; или полученный полимер сульфида кремния, имеющий асбестоподобную структуру. Ныне твердо установлено, что неорганическая природа многих больших молекул не исключает эластичности и других типичных свойств органических полимеров. Таким образом, на границе органической и неорганической химии оформилась и успешно развивается новая ветвь – неорганические полимеры. Все новые и новые открытия совершаются в этой области.

Неорганические полимеры еще очень мало изучены, и в настоящее время расположение их в какие-либо классы затруднительно.

Неорганические полимеры еще очень мало изучены, и в настоящее время разделение их на классы затруднительно. Поэтому ниже перечислены только некоторые неорганические полимеры.

Неорганические полимеры состоят из неорганических атомов и не содержат органических боковых радикалов.

Неорганические полимеры – это полимеры, не содержащие углерод. В нефтепромысловой практике в основном используют органические и элементоорганические полимеры.

Неорганические полимеры имеют неорганические основные цепи и не содержат органических боковых радикалов.

Неорганические полимеры привлекают внимание многих исследователей при создании материалов, обладающих высокими техническими свойствами.

Неорганические полимеры отличаются от органических и элементоорганических полимеров высокоупорядоченной кристаллической структурой. Они имеют большой модуль упругости и повышенную стойкость к термоокислительной деструкции.

Неорганические полимеры, содержащие галогенные группы, обсуждаются в разд.

Характеристики неорганических полимеров

При создании полимерных материалов за основу качеств конечного продукта берут:

  • гибкость и эластичность;
  • прочность на сжатие, кручение, разрыв;
  • агрегатное состояние; температурная стойкость;
  • электропроводность;
  • способность пропускать свет и т.д.

при изготовлении берут чистое вещество, подвергают его специфическим процессам полимеризации, и на выходе получают синтетические (неорганические) полимеры, которые:

  1. Выдерживают запредельные температуры.
  2. Способны принимать изначальную форму после деформации под действием внешних механических сил.
  3. Становятся стеклообразными при нагревании до критической температуры.
  4. Способны менять структуру при переходе от объемной к плоскостной, чем обеспечивается вязкость.

Способность преобразовываться используется при формовом литье. После остывания неорганические полимеры твердеют, и приобретают также различные качества от прочного твердого до гибкого, эластичного. При этом обеспечивается экологическая безопасность, чем не может похвастаться обычный пластик. Полимерные материалы не вступают в реакцию с кислородом, а прочные связи исключают высвобождение молекул.

Классификация полимеров по областям применения

Полимеры, главным образом, термопласты подразделяют по степени роста технических и эксплуатационных характеристик. Основной характеристикой полимера при этом является температура долговременной эксплуатации. В данном случае полимеры с известными допущениями и довольно большими разночтениями у разных авторов разделяют на три категории:

  • General purpose plastics или полимеры общего (общетехнического) назначения;
  • Engineering plastics или конструкционные пластики (полимеры инженерно-технического назначения);
  • Super-engineering plastics или суперконструкционные полимеры.

Также всё более важную роль в современной индустрии полимеров играет класс эластомеров или термоэластопластов (TPE, ТПЭ). По своим свойствам и методам переработки в изделия эти материалы аналогичны термопластам, при этом по внешнему виду и эксплуатационным свойствам близки к резине и каучуку. ТПЭ в быту повсеместно путают с резиной из-за способности этих материалов к значительным обратимым деформациям.

Также полимеры и их марки классифицируют по наиболее подходящему способу переработки – литьевые, экструзионные, пресс-порошки и т.п.

Что такое полимер?

Полимерами называют высокомолекулярные химические соединения (ВМС) вещества, обладающие молекулярной массой от тысяч до нескольких миллионов атомных единиц. Макромолекулы полимеров образовываются из огромного количества повторяющихся мономерных звеньев. Свойства полимеров зависят от химической природы мономера, молекулярной массы, методом производства полимера, стереоструктурой молекул (расположением в пространстве) и степенью их разветвленности, а также связей между молекулами различной природы.

Большинство полимеров являются по природе диэлектриками, также имеют низкую теплопроводность и достаточно высокие механические характеристики.

Химические свойства полимеров

Химические свойства полимеров отличаются от таковых у низкомолекулярных веществ. Это объясняется размером молекулы, наличием различных функциональных группировок в ее составе, общим запасом энергии активации.

В целом можно выделить несколько основных типов реакций, характерных для полимеров:

  1. Реакции, которые будут определяться функциональной группой. То есть если в состав полимера входит группа ОН, характерная для спиртов, значит, и реакции, в которые они будут вступать, будут идентичны таковым у спиртов (дегидратация, окисление, восстановление, дегидрирование и так далее).
  2. Взаимодействие с НМС (низкомолекулярными соединениями).
  3. Реакции полимеров между собой с образованием сшитых сетей макромолекул (сетчатые полимеры, разветвленные).
  4. Реакции между функциональными группировками в пределах одной макромолекулы полимера.
  5. Распад макромолекулы на мономеры (деструкция цепи).

Все перечисленные реакции имеют в практике большое значение для получения полимеров с заранее заданными и удобными человеку свойствами. Химия полимеров позволяет создавать термоустойчивые, кислотно и щелочеупорные материалы, обладающие при этом достаточной эластичностью и стабильностью.

Особенности

Синтетические полимеры имеют в своей основе низкомолекулярные органические соединения (мономеры), которые в результате реакций полимеризации или поликонденсации образуют длинные цепочки. Расположение и конфигурация молекулярный цепей, тип их связи во многом определяют механические характеристики полимеров.

Искусственные и синтетические полимеры обладают радом специфических особенностей. На первом месте следует отметить их высокую эластичность и упругость – способность противостоять деформациям и восстанавливать первоначальную форму. Пример – полиамид, резина. Полиуретановая нить – эластан, способна без разрыва изменять свою длину на 800 % и затем восстанавливать первоначальный размер. Наличие длинных молекулярных цепочек в структуре синтетических материалов обусловило низкую хрупкость пластиковых изделий. В большинстве случаев увеличение хрупкости у некоторых типов пластмасс происходит при понижении температуры. Органические материалы практически полностью лишены этого недостатка.

Указанные свойства дополняются высокой коррозионной стойкостью, износостойкостью. Большинство известных полимеров имеют высокое электрическое сопротивление, низкую теплопроводность.

Отмечая высокие эксплуатационные и технологические качества, нельзя забывать и про отрицательные стороны:

  • Сложность утилизации. Вторичное использование допускает только термопластичный материал и только в случае правильной сортировки. Смесь полимеров с различным химическим составом вторичной переработке не подлежит. В природе пластики разлагаются чрезвычайно медленно – вплоть до десятков и сотен лет. При сжигании некоторых типов пластмасс в атмосферу выделяется большое количество высокотоксичных веществ и соединений. Особенно это касается пластиков, содержащих галогены. Наиболее известный материал такого типа – поливинилхлорид (ПВХ).
  • Слабая устойчивость к ультрафиолетовому излучению. Под действием ультрафиолетовых лучей длинные полимерные цепочки разрушаются, увеличивается хрупкость изделий, снижается прочность, холодостойкость.
  • Трудность или невозможность соединения отдельных типов синтетических материалов.

Пластмассы

Химические свойства полимеров показывают их высокую стойкость к агрессивным веществам, но в ряде случаев затрудняет использование клеевых составов. Поэтому для термопластичных полимеров используют метод сварки – соединение разогретых элементов. Некоторые вещества, например, фторопласты, вообще не подлежат соединениям, кроме механических.

Основные характеристики

Более распространенными являются гетероцепные полимеры, в которых происходит чередование электроположительных и электроотрицательных атомов, например B и N, P и N, Si и O. Получить гетероцепные неорганические полимеры (НП) можно с помощью реакций поликонденсации. Поликонденсация оксоанионов ускоряется в кислой среде, а поликонденсация гидратированных катионов – в щелочной. Поликонденсация может быть проведена как в растворе, так и в твердых веществах при наличии высокой температуры.

Многие из гетероцепных неорганических полимеров можно получить только в условиях высокотемпературного синтеза, например, непосредственно из простых веществ. Образование карбидов, которые являются полимерными телами, происходит при взаимодействии некоторых оксидов с углеродом, а также при наличии высокой температуры.

Длинные гомоцепные цепи (со степенью полимеризации n>100) образуют карбон и p-элементы VI группы: сера, селен, теллур.

Виды полимеров

По своему происхождению полимеры можно разделить на три типа:

природные. Природные или натуральные полимеры можно встретить в природе в естественных условиях. К этой группе относятся, например, янтарь, шелк, каучук, крахмал.

Рис. 3. Каучук.

  • синтетические. Синтетические полимеры получают в лабораторных условиях, синтезирует их человек. К таким полимерам относятся ПВХ, полиэтилен, полипропилен, полиуретан. эти вещества не имеют ни какого отношения к природе.
  • искусственные. Искусственные полимеры отличаются от синтетических тем, что они синтезированы хоть и в лабораторных условиях, но на основе природных полимеров. К искусственным полимерам относится целлулоид, ацетатцеллюлоза, нитроцеллюлоза.

С точки зрения химической природы полимеры делятся на органические, неорганические и элементоорганические. Большая часть всех известных полимеров являются органическими. К ним относятся все синтетические полимеры. Основу веществ неорганической природы составляют такие элементы, как S, O, P, H и другие. Такие полимеры не бывают эластичными и не образуют макроцепей. Сюда относятся полисиланы, поликремниевые кислоты, полигерманы. К полимерам с элемнтоорганической природой относится смесь как органических, так и неорганических полимеров. Главная цепь – всегда неорганическая, боковые – органические. Примерами полимеров могут служить полисилоксаны, поликарбоксилаты, полиорганоциклофосфазены.

Все полимеры могут находится в разных агрегатных состояниях. Они могут быть жидкостями (смазки, лаки, клеи, краски), эластичными материалами (резина, силикон, поролон), а также твердыми пластмассами (полиэтилен, полипропилен).

Что мы узнали?

Тема «Полимеры» является обязательной для изучения по химии. В данной статье дается определение этому понятию, раскрываются виды и типы полимеров.

  1. /10

    Вопрос 1 из 10

Основные типы реакций полимеров

Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (т. н. сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты (см. Деструкция полимеров); реакции боковых функциональных групп полимеров. с низкомолекулярными веществами, не затрагивающие основную цепь (т. н. полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией.

Примером полимераналогичных превращений может служить омыление поливинилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров. с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимеров. Наиболее явно это проявляется в случае сшитых полимеров.

Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи. Некоторые свойства полимеров., например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимеры из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.

Важнейшие характеристики полимеров — химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвлённости и гибкости макромолекул, стереорегулярность и др. Свойства полимеров. существенно зависят от этих характеристик.

Что такое полимеры

У слова «полимер» греческое происхождение: pollá (многие) и méros (часть). Полимеры — это вещества, которые состоят из множества мономеров (структурные звенья). По строению полимеры бывают линейными, разветвленными или сетевыми. Количество мономерных звеньев и молекулярная масса каждого из них влияют на свойства будущего материала.

Название синтетических полимеров, используемых в статье:

  • Полиэтилен — термопластичный полимер этилена.
  • Полиуретан — сырьем для этого полимера служит полиол. Его получают из сырой нефти.
  • Полиамид — получается в результате химической переработки угля, газа и нефти.
  • Поливинилхлорид (ПВХ) — синтетический термопластик, который состоит из хлора и этилена.
  • Бакелит — продукт реакции фенола и формальдегида под давлением при высоких температурах.
  • Полистирол — материал, который получают в результате полимеризации стирола.
  • Полиметилметакрилат (оргстекло) — полимер, который пропускает свет, и внешне похож на стекло.
  • Полиэфирное волокно — используется в качестве наполнителя в игрушках, одеялах, подушках, мебели.
  • Полипропилен — твердое вещество, которое получается в результате полимеризации пропилена (бесцветный газ).
  • Полиамиды — в эту группу пластмасс входят найлон, капрон, анид.
  • Тефлон — полимер, который содержит углерод и фтор (политетрафторэтилен).
  • Полимерные композиты — изготавливаются из двух и более компонентов. В качестве основного (матрицы) выступает полимер.
  • Полиакриламид (ПАА) — полимер белого цвета без запаха. Растворяется в воде, в ледяной уксусной и молочной кислотах и глицерине, но не растворяется в этаноле, метаноле и ацетоне.

Будущее высокомолекулярных соединений

В ходе молекулярной эволюции сама природа создала новые вещества в виде различных молекулярных соединений. Двигаясь по этому пути, ученые не только разрабатывают новые соединения, но и стремятся разрешать проблемы по безопасной утилизации продукции, которая используется не только в быту. 

Опираясь за законы биологии, ученые активно работают над созданием умных высокомолекулярных соединений, получение которых сможет изменять их структуру и свойства в зависимости от окружающей среды. Ведутся разработки:

  • биоразлагаемых пленок, в состав которых входит природный полимер – кукурузный крахмал;

  • упаковки, которая будет менять цвет в зависимости от срока годности товара, и разлагаться без вреда для экологии;

  • ведется разработка эко-почвы с гидрогелем для засушливых зон природного земледелия;

  • создаются полимерные жидкости, которые будут менять свои свойства в зависимость от среды, в которой находятся (для экономии воды в нефтедобывающей отрасли);

  • фармацевтической полимерной упаковки для доставки лекарственных средств непосредственно к больному органу внутри организма человека;

Человечество уже не может развиваться без полимерной продукции. Сейчас стоит вопрос о ее безопасности для экологии и переходе на новый уровень взаимодействия.

Магистраль основной группы

Традиционно в области неорганических полимеров основное внимание уделяется материалам, в которых основная цепь состоит исключительно из элементы основной группы

Гомочецепные полимеры

Полимеры гомоцепи имеют только один вид атомов в основной цепи. Одним из членов является полимерная сера, которая обратимо образуется при плавлении любого из циклических аллотропов, таких как S8. Органические полисульфиды и полисульфаны содержат короткие цепочки атомов серы, закрытые соответственно алкилом и Н. Элементарный теллур и серый аллотроп элементарного селена также являются полимерами, хотя и не поддаются переработке.

Серый аллотроп селена состоит из спиральных цепочек атомов Se.

Полимерные формы элементов IV группы хорошо известны. Лучшие материалы полисиланы, которые аналогичны полиэтилен и родственные органические полимеры. Они более хрупкие, чем органические аналоги, и из-за более длинных связей Si – Si содержат более крупные заместители. Поли (диметилсилан) получают восстановлением диметилдихлорсилан. Пиролиз поли (диметилсилана) дает SiC волокна.

В некоторой степени известны и более тяжелые аналоги полисиланов. К ним относятся полигерманы, (Р2Ge)п, и полистаннаны, (Р2Sn)п.

На основе Si

Гетероцепочечные полимеры имеют более одного типа атомов в основной цепи. Обычно вдоль основной цепи чередуются два типа атомов. Большой коммерческий интерес представляют полисилоксаны, основная цепь которых состоит из центров Si и O: -Si-O-Si-O-. Каждый центр Si имеет два заместителя, обычно метил или фенил. Примеры включают полидиметилсилоксан (ПДМС, (Я2SiO)п), полиметилгидросилоксан (PMHS (MeSi (H) O)п) и полидифенилсилоксан (Ph2SiO)п). К силоксанам относятся полисилазаны. Эти материалы имеют формулу основной цепи -Si-N-Si-N-. Одним из примеров является пергидридополисилазан PHPS. Подобные материалы представляют академический интерес.

P на основе

Родственным семейством хорошо изученных неорганических полимеров являются полифосфазены. Они имеют магистраль -P-N-P-N-. Имея два заместителя у фосфора, они структурно похожи на полисилоксаны. Такие материалы образуются путем полимеризации с раскрытием кольца гексахлорфосфазен с последующим замещением групп P-Cl алкоксидом. Такие материалы находят специализированное применение в качестве эластомеров.

Общая структура полифосфазенов. Серые сферы представляют любую органическую или неорганическую группу.

S-основанный

В политиазилы имеют основу -S-N-S-N-. В отличие от большинства неорганических полимеров, в этих материалах отсутствуют заместители у атомов основной цепи

Такие материалы обладают высокой электропроводностью – открытие, которое привлекло большое внимание в то время, когда полиацетилен был открыт. это сверхпроводящий ниже 0,26 К

Иономеры

Обычно к неорганическим полимерам с нейтральным зарядом относятся: иономеры. Фосфор-кислородные и бор-оксидные полимеры включают полифосфаты и полибораты.

Типы переработки полимеров в изделия

Несмотря на то, что в повседневной жизни термин «переработка пластмасс» используется в значении сбора и вторичного производства изделий из уже использованного пластика, на самом деле у термина несколько другой смысл. Переработкой полимеров называют получение готовых изделий из синтезированных ранее полимеров, в том числе первичных.

Переработка полимеров, как правило происходит при высоких температурах от 150 до 500 градусов Цельсия в зависимости от природы конкретного полимера. Исключение составляют некоторые термореактивные пластики, например двухкомпонентные разновидности эпоксидных смол или пенополиуретана, которые реагируют при комнатной температуре. При переработке в полимер могут вводить разные добавки (в случае, например, не применяющегося в качестве чистого вещества ПВХ, добавки практически обязательны) для лучшей перерабатываемости, придания пластмассе нужных свойств или удешевления продукта. Наиболее употребляемыми аддитивами (добавками для полимеров) являются , например, наполнители, красители, стабилизаторы, пластификаторы, модификаторы, нуклеаторы и т.д.

Реакции полимеризации

Реакции полимеризации — это реакции образования полимера путем объединения огромного числа молекул низкомолекулярного вещества (мономера).

Количество молекул мономера (n), объединяющихся в одну молекулу полимера, называют степенью полимеризации.

В реакцию полимеризации могут вступать соединения с кратными связями в молекулах. Если молекулы мономера одинаковы, то процесс называют гомополимеризацией, а если различны — сополимеризацией.

Примерами реакций гомополимеризации, в частности, является реакция образования полиэтилена из этилена:

Примером реакции сополимеризации является синтез бутадиен-стирольного каучука из бутадиена-1,3 и стирола:

этилен, этенполиэтилен
пропилен, пропенполипропилен
стирол, винилбензолполистирол, поливинилбензол
винилхлорид, хлористый винил, хлорэтилен, хлорэтенполивинилхлорид (ПВХ)
тетрафторэтилен (перфторэтилен)тефлон, политетрафторэтилен
изопрен (2-метилбутадиен-1,3)изопреновый каучук (натуральный)
 бутадиен-1,3 (дивинил) бутадиеновый каучук, полибутадиен-1,3

хлоропрен(2-хлорбутадиен-1,3)

хлоропреновый каучук

и

бутадиен-1,3 (дивинил)

и

стирол (винилбензол)

бутадиенстирольный каучук
Поделитесь в социальных сетях:FacebookX
Напишите комментарий