Принцип работы
Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.
При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.
Эффективное использование энергии солнца
Энергия солнца не производит вредных выбросов и является одним из самых экологически чистых источников. Она доступна для частных лиц, приносит небольшую пользу даже в плохую погоду и не производит шума.
Чтобы максимально эффективно использовать панели и не терять КПД, необходимо тщательно следить за их чистотой. Парадокс состоит в том, что отопление чаще всего требуется либо ночью, либо зимой, когда поступает минимальное количество света. А солнечные коллекторы способны накапливать тепловую энергию лишь ненадолго, что делает их практически бесполезными в такие периоды времени.
Не стоит забывать о затратах на ремонт и специальное оборудование.
Открытые солнечные коллекторы
Открытый солнечные коллектор – это простая конструкция из трубок, по которым течет теплоноситель (вода, антифриз, воздух или газ). Они дешевые, но недостаточно эффективные, чтобы отапливать частные дома. Без изоляции тепло держится недолго и пойдет только на нагрев воды в теплое время года. Конструкция настолько простая, что их часто мастерят самостоятельно. Устанавливают коллекторы в солнечных и безветренных районах со стабильно высокой температурой.
Трубчатые коллекторные разновидности
Трубчатые коллекторы отличаются открытым типом строения, более защищенного, чем предыдущий тип. По трубкам так же циркулирует теплоноситель, но каждая из них крепится отдельно, облегчая монтаж. От их количества зависит мощность. Таким системам не нужно поворачиваться вслед за солнцем, чтобы собирать энергию в течение всего дня, так как им помогает цилиндрическая форма. Однако установку так же нужно постоянно чистить, и высокая стоимость придется не каждому по душе.
Плоские закрытые системы
Плоские системы достаточно эффективные при средней стоимости и способны работать даже на морозе. Простые безвакуумные конструкции менее продуктивны, но дешевле, и их легче чинить, то есть увеличен срок службы.
Солнечная энергия в Великобритании
В 2020 году доля энергии из возобновляемых источников в Великобритании впервые превысила долю энергии от сжигания ископаемого топлива. При этом большая часть возобновляемой энергии использовалась для производства электричества (75%). Основные ее источники — твердые биомассы (33% от общего потребления возобновляемых источников энергии) и ветер (24%), на солнечную энергию пришлось лишь 4,5%. Прирост в сравнении с 2019 годом составил 4,6%.
Выработка энергии с помощью солнечных панелей бурно росла с 2012 до 2017 года. Это связывали с политикой государства, которое предлагало выгодные тарифы для тех, кто устанавливал такие панели. Позже показатели роста стабилизировались. В целом доля солнечной энергии среди всей возобновляемой энергии выросла с 3,3% в 2012 году до 9,8% в 2020 году.
Пик роста мощностей возобновляемых источников энергии пришелся на 2015 год — тогда он составил 6 ГВт, из них 4,1 ГВт пришлись на солнечные панели. В трудном 2020 году этот показатель вырос всего на 1 ГВт. Сегодня в Великобритании установлено более 1 млн солнечных батарей.
Преимущества и недостатки солнечных панелей
Ученые не могут определиться насколько эффективно и целесообразно применять солнечные батареи в некоторых регионах планеты. Но о том, что именно за солнечными электростанциями будущее, то в этом уже сомнений не возникает. Любое техническое средство имеет ряд достоинств и недостатков, может принести пользу или вред.
1.1. Преимущества солнечных панелей
Прежде чем говорить о недостатках или вреде от солнечных панелей, стоит остановиться на положительных аспектах и пользе от СЭС (солнечные электростанции):
- бесплатный, неиссякаемый источник энергии;
- возможность обеспечить полностью автономное (независимое) энергоснабжение;
- в процессе эксплуатации не наносится урон окружающей среде (по сравнению с ТЭС, АЭС и ГЭС);
- бесшумность при работе (конструкция лишена движущихся деталей);
- довольно большой срок эксплуатации (минимум 25 лет) плюс возможность в дальнейшем заменить не всю станцию, а только вышедшие из строя элементы;
- высокая устойчивость к разного рода механическим повреждениям.
1.2. Недостатки
Несмотря на экологичность солнечных станций, использование такого вида зеленой энергетики существует ряд недостатков:
- дороговизна производства;
- низкий коэффициент полезного действия батареи (5 -25%);
- потребность в больших площадях для размещения панелей;
- сложная процедура монтажа всей системы. Например, для получения максимально возможной продуктивности системы необходимо учитывать азимут данной местности и ряд других требований;
- снижение производства энергии в пасмурный день или в ночное время суток.
Насколько оправдано использование солнечных батарей для частного дома?
Теперь подсчитайте количество солнечных дней в вашей местности. Разделите стоимость оборудования на 25 лет и подсчитанные солнечные дни в году. И вы увидите, стоит ли использовать в вашем случае данные установки. Кроме того, учтите площадь, необходимую для получения 1 кВт электроэнергии для вашего региона. Это можно узнать достаточно легко у продавцов-консультантов, предлагающих солнечные батареи.
Также учтите и период наиболее активного солнечного излучения. Как правило, в наших широтах это летний период времени.
Теперь подумайте, для каких целей вам нужно электричество в этот период.
- Освещение.
- Получение горячей воды.
- Работа бытовых приборов.
Статья по теме: Как правильно выбрать цвет и фасон штор для зала
С горячей водой может справиться солнечный коллектор, который стоит значительно дешевле, да и любой мастеровитый хозяин может изготовить его своими руками. При этом он сможет работать и в осенне-зимний сезон. На дачном участке и в частном секторе для нагрева воды в летний период издавна используются водогрейные емкости, работающие от тепловой энергии солнца.
А вот с освещением солнечная батарея вполне поможет вам справиться.
Чего не рассказывают рекламные проспекты – так это то, что вам придется регулярно менять аккумуляторы. И даже самая эффективная установка на фотоэлементах поставляет электричество сначала в аккумуляторы, а уже потом в систему электроснабжения дома.
Зная срок службы обычных автомобильных аккумуляторов и их стоимость, а также их емкость, можно узнать, во сколько обойдется техобслуживание солнечных батарей. А более эффективные специализированные энергонакопители будут стоить значительно дороже и в итоге обойдутся вам никак не дешевле.
Также нужно учитывать и КПД предлагаемых на вашей территории моделей. Далеко не все из них могут действительно эффективно работать в условиях русского климата.
Хоть реклама и говорит о том, что поверхность батарей не боится пыли, все же всем понятно, что покрытая пылью батарея будет работать гораздо менее эффективно. А срок службы ее элементов от этого не продлится. Поэтому нужно позаботиться о своевременной регулярной чистке поверхности панели.
Кроме того, в жаркую погоду электроника может отказываться работать.
В настоящее время пока данные технологии доступны не всем слоям общества. Однако современные тенденции позволяют говорить о том, что в скором будущем существующие недостатки будут устранены, а светлые головы ученых мужей придумают новые способы производства более дешевых моделей, которые будут доступны каждому желающему.
Критерии выбора
Выбор инвертора для установки солнечной электростанции очень важен. От того, какое устройство будет подключено, зависит будущая работа всей системы. Есть несколько основных технических параметров, от которых стоит отталкиваться перед тем, как выбрать подходящий инвертор.
Мощность — от этой величины зависит мощность работы всей электростанции. Через инвертор проходит весь ток, который потом предается в помещение и питает подключенные приборы. Номинальная мощность указывает на допустимую нагрузку, которую может испытывать преобразователь, как во время подключения, так и на протяжении всей работы. Выбирают мощность исходя из следующих критериев:инвертор в12 В подойдет для системы мощностью до 600 Вт, устройство на 24 В устанавливают при мощности 600-1500 Вт и 48 В при мощности свыше 1500 Вт. Возможность превышения номинальной нагрузки
Эта крайне важно для таких приборов, как стиральные машины, холодильники и кондиционеры, в которых присутствуют электродвигатели. При их запуске, требуется немного больше электроэнергии, и если мощности инвертора не достаточно для этого, то устройства могу в лучшем случае не запуститься, а в худшем — выйти из строя
Вид выходного сигнала — синусоидальная форма отвечает за возможность подключения какого-либо оборудования к конкретной модели инвертора
Преимущества в том, что такой тип выходного сигнала защищает электроприборы от перепадов напряжения. Коэффициент полезного действия — определяется количеством пустой энергии, которую прибор потратил, например, на самого себя. Этот показатель не должен превышать 5-15%, иначе установка солнечных батарей будет невыгодной, а их работа малоэффективной. КПД основной массы поставляемых на рынок инверторов составляет 85-95%. Однофазные или трехфазные инверторы. Первые стоят дешевле вторых, но они подходят только тогда, когда потребляемая мощность менее 10 кВт. Величина напряжения у таких преобразователей энергии 220 В, частота 50 Гц. Трехфазные инверторы имеют более широкий выбор в плане напряжения — 315 В, 400 В, 690 В. Количество инверторов в системе. Сколько устройств устанавливать зависит от мощности мощность солнечных батарей. Если она не больше 5 кВт, то достаточно одного инвертора. При большей мощности потребуется от двух устройств. Определяют необходимое количество из расчета, что на каждые 5 кВт необходим один инвертор. Масса инверторов указывает в первую очередь на их качество. Легкими хорошие устройства не могут быть. Но некоторые производители предлагают низкопробные преобразователи для солнечных аккумуляторов. В них нет трансформатора. Это чревато тем, что, если ток повысится, то вся систем может выйти из строя.
При выборе инвертора для солнечных батарей нужно учитывать его мощность
Кроме этого разные модели имеют ряд дополнительных опций и защитных элементов. Это может быть встроенная розетка, ЖК-дисплей, зарядное устройство и др. При проблемах с электричеством лучше подобрать инвертор с защитой от короткого замыкания и перегрузки.
Также нужно учитывать пусковую мощность преобразователя. Она используется всего в течение нескольких секунд, но очень важна для запуска устройства. После этого инвертор начинает работать в обычном режиме. Пусковая мощность должна в 1,5 раза превышать величину номинальной мощности.
Автономные электростанции на солнечных модулях
Такие СЭС нужны для обеспечения электричеством домов, которые по каким-либо причинам не могут быть подключены к центральной сети. Они могут выступать как самостоятельные источники энергии, так и использоваться совместно с электрогенераторами.
Ток, вырабатываемый солнечной электростанцией в светлое время суток поступает на приборы и заряжает аккумуляторную батарею. В условиях недостаточной освещённости или в темное время суток расходуется заряд аккумулятора.
Схема подключения автономной системы
Помимо постоянного снабжения электричеством домов, которые не подключены к общей сети, такие электростанции могут помочь сократить время работы генераторов (при их наличии), продлить амортизационный ресурс, увеличить сроки между обязательными техническими обслуживаниями (ТО) и снизить расход топлива.
Плюсы и минусы
Помимо высокой цены, недостатком является и необходимость периодической замены аккумуляторных батарей. Частота смены аккумулятора зависит от интенсивности использования и режима работы, соблюдения рекомендаций производителя по глубине предельного разряда и по температурным режимам в ходе эксплуатации
При выборе солнечных электростанций нужно обратить внимание на такие характеристики, как:
- тип батареи;
- ёмкость батареи;
- количество циклов заряда/разряда;
- рекомендованные температуры внешней среды, оптимальные для работы аккумуляторной батареи, и возможность их соблюдения владельцем на практике.
Солнечные электростанции
Сетевые солнечные электростанции
Автономные солнечные электростанции
Гибридные/универсальные солнечные электростанции
Резервное электроснабжение на базе АКБ с функцией ИБП
Свинцово-кислотные аккумуляторы – для тех, кто ищет баланс между ценой и качеством. Такие батареи больше всего подходят для работы в буферных режимах, как резервный источник электроэнергии, но могут эксплуатироваться и в цикличном режиме (ежедневный заряд и разряд). Частота замены таких аккумуляторов в системе автономной СЭС при использовании в буферном режиме – один раз в 6-10 лет, в цикличном – один раз в 2-2,5 года.
В автономной солнечной электростанции из комплекта «Расширенный» от Мосэнергосбыт используются аккумуляторные батареи со связанным в геле электролитом. Максимальный срок службы такой батареи 10 лет, оптимальная температура окружающей среды для эксплуатации +15-20 °C.
Стоит заметить, что гелевые АКБ являются необслуживаемыми и не выделяют в процессе своей работы никаких газов, что очень важно для безопасной эксплуатации аккумуляторов в жилых помещениях
Преобразование солнечной энергии
Чтобы понять, как работают солнечные батареи, нужно знать устройство и принцип работы. Непосредственное превращение солнечной энергии в электрический ток происходит внутри фотоэлементов, соединенных последовательно между собой. Основой каждого из них служат кристаллы кремния, широко распространенные в природе в виде различных соединений. Более всего известен обычный песок, который является оксидом кремния. По аналогии, кристаллический кремний представляет собой крупную песчинку, выращенную искусственным путем.
Готовые кристаллы получаются в форме кубиков, после чего они разрезаются на тонкие пластины, толщиной 200 микрон. На одну сторону такой пластинки наносится слой бора, а на другую – слой фосфора. На границе кремния и бора присутствует избыточное количество электронов, а со стороны фосфора их, наоборот, не хватает. Место стыковки с такими физическими свойствами называется р-п переходом.
Принцип действия солнечной батареи заключается в следующем. Когда солнечный свет попадает на фотоэлементы, его фотоны начинают бомбардировать поверхность. Излишки электронов выбиваются, после чего начинается их движение туда, где их не хватает, то есть, в сторону дырок. В этот момент и происходит возникновение электрического тока, представляющего собой упорядоченное движение электронов. Сбор электричества производится по металлическим дорожкам, подведенным к каждому фотоэлементу.
Отдельно взятый фотоэлемент обладает незначительной мощностью. Его напряжение находится в пределах 0,5 В. Для получения более высокого выходного напряжения в 18 вольт, элементы в количестве 36 единиц соединяются последовательно в общую батарею. Полученного напряжения вполне достаточно аккумулятору на 12 вольт. Данные параметры взяты по максимуму, на практике же заявленные показатели будут ниже. Все зависит от того, как устроена солнечная батарея.
Готовая батарея в сборе устанавливается на подложку, сверху накрывается стеклом, после чего все швы и стыки герметизируются. Сами батареи также могут соединяться между собой последовательно или параллельно. В результате, получаются небольшие солнечные электростанции, широко используемые на дачах и в частных домах. Единственным условием является чистая поверхность и наличие яркого солнечного света.
На что обратить внимание при выборе солнечных батарей?
При выборе солнечных батарей для частного дома или дачи необходимо обратить внимание не только на КПД батареи, которое в современных конструкциях на основе кремниевых элементов, ограничивается величиной 20-21%, но и на суммарную мощность купленной солнечной электростанции. Она должна обеспечить электроэнергией, достаточной для потребления электросистемой дома в любую погоду. Зимой сильно снижается длительность светового дня, поэтому в регионах, где это наблюдается, необходимо делать запас мощности, чтобы батарей хватало на то время, когда солнце менее активно
Почему выработка зимой меньше? Не нужно думать, что из-за холода батарея будет хуже работать. Негативное действие на эффективность работы оказывают осадки в виде снега, которые необходимо удалять и меньшая продолжительность светового дня с высокой облачностью – именно это негативно влияет на выработку электроэнергии в зимнее время. Летом солнечная батарея генерирует меньшее напряжение, чем зимой. В жару температура на поверхности гелиопанели может достигать 50–55 °С, что снижает эффективность фотогальванических элементов
Зимой сильно снижается длительность светового дня, поэтому в регионах, где это наблюдается, необходимо делать запас мощности, чтобы батарей хватало на то время, когда солнце менее активно. Почему выработка зимой меньше? Не нужно думать, что из-за холода батарея будет хуже работать. Негативное действие на эффективность работы оказывают осадки в виде снега, которые необходимо удалять и меньшая продолжительность светового дня с высокой облачностью – именно это негативно влияет на выработку электроэнергии в зимнее время. Летом солнечная батарея генерирует меньшее напряжение, чем зимой. В жару температура на поверхности гелиопанели может достигать 50–55 °С, что снижает эффективность фотогальванических элементов.
Еще один важный момент при составлении плана “Как выбрать солнечные батареи для домашней электростанции” – эффективность финансовых вложений. Многие батареи при правильном выборе окупаются достаточно быстро, так как производимая при использовании энергии солнца электроэнергия является бесплатной. Выходное номинальное напряжение солнечных батарей кратно 12В и 24В, но бывают и 20В – это панели с 60 элементами. Фактическое напряжение на выходе гелиопанелей, как правило больше номинального. Так гелиопанель с выходным номинальным напряжение, равным 12В, в точке максимальной мощности выдает 17В, а при холостом ходе выдает 23В. Аналогично работают и батареи с номинальным напряжением на выходе 20 В и 24В. Двадцативольтовая батарея выдает напряжение на выходе 30В точке максимальной мощности и 39В – в режиме холостого хода, а двадцатичетырехвольтовая соответственно – 37В и 45В.
Где используются
Все рассмотренные варианты можно устанавливать в частном секторе, чтобы получать электроэнергию от солнца и сэкономить на энергоресурсах или даже добиться полной автономности. Что касается использования, нужно учесть несколько простых рекомендаций:
Монокристаллические и поликристаллические варианты лучше всего ставить на кровле или на земле, предварительно соорудив каркас под нужным углом. Желательно, чтобы угол наклона регулировался, так можно подстраиваться под солнце.
Пленочные модули можно располагать где угодно, как на стенах, так и на крышах
Они хорошо работают даже если лучи попадают на поверхность не под прямым углом, что очень важно.
В промышленных масштабах также отдают предпочтение пленочным батареям как более дешевым и простым в монтаже.
Пленочные варианты проще устанавливать при больших объемах работы.
Есть несколько разновидностей солнечных батарей, но около 90% рынка занимают традиционные кремниевые модели благодаря низкой цене и хорошим характеристикам. Можно выбрать и одно из полупроводниковых решений, но тогда придется потратить в полтора-два раза больше средств.
Как работает солнечная батарея
Все живое на земле возникло, благодаря энергии солнца. Ежесекундно на поверхность планеты поступает огромное количество энергии в виде солнечного излучения. В то время, как мы сжигаем тысячи тонн угля и нефтепродуктов для обогрева жилища, страны, расположеные ближе к экватору изнывают от жары. Пустить энергию солнца на нужды человека – вот достойная для пытливых умов задача. В этой статье мы рассмотрим конструкцию прямого преобразователя солнечного света в электрическую энергию – солнечного элемента.
Тонкая пластина состоит из двух слоев кремния с различными физическими свойствами. Внутренний слой представляет собой чистый монокристаллический кремний, обладающий дырочной проводимостью. Снаружи он покрыт очень тонким слоем «загрязненного» кремния, например с примесью фосфора. На тыльную сторону пластины нанесен сплошной металлический контакт. У границы n-и p- слоёв в результате перетечки зарядов образуются обеднённые зоны с нескомпенсированным объёмным положительным зарядом в n-слое и объёмным отрицательным зарядом в p-слое. Эти зоны в совокупности и образуют p-n-переход.
Возникший на переходе потенциальный барьер препятствует прохождению основных носителей заряда, т.е. электронов со стороны p-слоя, но беспрепятственно пропускают неосновные носители в противоположных направлениях. Это свойство p-n-переходов и определяет возможность получения фото-ЭДС при облучении ФЭП солнечным светом. Когда СЭ освещается, поглощенные фотоны генерируют неравновесные электронно-дырочные пары. Электроны, генерируемые в p-слое вблизи p-n-перехода, подходят к p-n-переходу и существующим в нем электрическим полем выносятся в n-область.
Аналогично и избыточные дырки, созданные в n-слое, частично переносятся в p-слой. В результате n-слой приобретает дополнительный отрицательный заряд, а p-слой – положительный. Снижается первоначальная контактная разность потенциалов между p- и n-слоями полупроводника, и во внешней цепи появляется напряжение. Отрицательному полюсу источника тока соответствует n-слой, а p-слой – положительному.
Большинство современных солнечных элементов обладают одним p-n-переходом. В таком элементе свободные носители заряда создаются только теми фотонами, энергия которых больше или равна ширине запрещенной зоны. Другими словами, фотоэлектрический отклик однопереходного элемента ограничен частью солнечного спектра, энергия которого выше ширины запрещенной зоны, а фотоны меньшей энергии не используются. Преодолеть это ограничение позвляют многослойные структуры из двух и более СЭ с различной шириной запрещенной зоны. Такие элементы называются многопереходными, каскадными или тандемными. Поскольку они работают со значительно большей частью солнечного спектра, эффективность фотоэлектрического преобразования у них выше. В типичном многопереходном солнечном элементе одиночные фотоэлементы расположены друг за другом таким образом, что солнечный свет сначала попадает на элемент с наибольшей шириной запрещенной зоны, при этом поглощаются фотоны с наибольшей энергией.
Батареи работают не от солнечных лучей, а от солнечного света в принципе. Электромагнитное излучение достигает земли в любое время года. Просто в пасмурную погоду энергии вырабатывается меньше. Например, мы устанавливали автономные фонари на солнечных батареях. Конечно, бывают небольшие промежутки, когда батареи не успевают полностью заряжаться. Но в целом за зиму это не так уж и часто происходит.
Интересно, что даже если на солнечную панель попадает снег, она все равно продолжает преобразовывать солнечную энергию. А за счет того, что фотоэлементы нагреваются, снег сам оттаивает. Принцип такой же, как подогрев стекла у машины.
Идеальная зимняя погода для солнечной батареи морозный безоблачный день. Иногда в такие дни даже рекорды по генерации можно устраивать.
Зимой эффективность солнечной батареи падает. В Москве и Подмосковье в среднем в месяц она вырабатывает в 8 раз меньше электроэнергии. Скажем, если летом для работы холодильника, компьютера и верхнего освещения дома нужен 1 кВт энергии, то зимой для надежности лучше запастись 2 кВт.
При этом на Дальнем Востоке продолжительность солнечного сияния больше, эффективность снижается всего в полтора-два раза. Ну и, конечно, чем южнее, тем меньше разница между зимним и летним периодом.
Так же важен угол наклона модулей. Можно выставить универсальный угол, на целый год. А можно каждый раз менять, в зависимости от сезона. Делают это не владельцы дома, а специалисты, которые выезжают на место.
Принцип работы солнечной батареи
В результате перетечки зарядов на границе p- и n- слоев, в n-слое образуется зона нескомпенсированного положительного заряда, а в p-слое – отрицательного заряда, т.е. известный всем из школьного курса физики p-n-переход. Разность потенциалов, возникающая на переходе контактная разность потенциалов (потенциальный барьер) препятствует прохождению электронов с p-слоя, но беспрепятственно пропускает неосновные носители в направлении противоположном, что позволяет получить фото-ЭДС при попадании на ФЭП солнечного света.
При облучении солнечным светом, поглощенные фотоны начинают генерировать неравновесные электронно-дырочные пары. Генерируемые же вблизи перехода электроны, из p-слоя переходят в n-область.
Аналогичным образом попадают в p-слой избыточные дырки и слоя n (рисунок а). Получается, что в p-слое накапливается положительный заряд, а в n- слое – отрицательный, вызывая напряжение во внешней цепи (рисунок б). У источника тока есть два полюса: положительный — p-слой и отрицательный — n-слой.
Это основной принцип работы солнечный элементов. Электроны, таким образом, будто бегают по кругу, т.е. выходят из p-слоя и возвращаются в n-слой, проходя нагрузку (аккумулятор).
Фотоэлектрический отток в однопереходном элементе обеспечивают лишь те электроны, которые обладают энергией выше, чем ширина некой запрещенной зоны. Те же, которые обладают меньшей энергией, в этом процессе не участвуют. Это ограничение снять позволяют структуры многослойные, состоящие из более чем один СЭ, у которых ширина запрещенной зоны различная. Их называют каскадными, многопереходными или тандемными. Фотоэлектрическое преобразование у них выше за счет того, что работают такие СЭ с более широким солнечным спектром. В них фотоэлементы располагаются по мере уменьшения ширины запрещенной зоны. Солнечные лучи вначале попадают на фотоэлемент с самой широкой зоной, при этом происходит поглощение фотонов с наибольшей энергией.
Затем, фотоны, пропущенные верхним слоем, попадают на следующий элемент и т.д. В области каскадных элементов основным направлением исследования является использование в качестве одного компонента или нескольких арсенида галлия. У таких элементов эффективность преобразования составляет 35%. Элементы соединяют в батарею, поскольку изготовить отдельный элемент большого размера (следовательно, и мощности) не позволяют технические возможности.
Солнечные элементы способны работать длительное время. Они себя зарекомендовали как стабильный и надежный источник энергии, пройдя испытания в космосе, где главной опасностью для них является метеорная пыль и радиация, которые приводят к эрозии кремниевых элементов. Но, поскольку, на Земле эти факторы не оказывают на них столь негативного действия, можно предположить, что срок службы элементов будет еще более продолжительным.
Солнечные батареи уже находятся на службе человека, являясь источником питания для различных устройств, начиная от мобильных телефонов и заканчивая электромобилями.
И это уже вторая попытка человека обуздать безграничную солнечную энергию, заставив работать ее себе во благо. Первой попыткой было создание солнечных коллекторов, электричество в которых вырабатывалось за счет нагрева сконцентрированными лучами солнца воды до температуры кипения.
Термальная солнечная электростанция в Испании (город Севилья)
Преимущество солнечных батарей в том, что они непосредственно производят электричество, теряя энергии намного меньше, чем солнечные многоступенчатые коллекторы, в которых процесс ее получения связан с концентраций лучей Солнца, нагревом воды, выделением пара, вращающего паровую турбину и только после этого выработке генератором электричества. Основные параметры солнечных батарей – в первую очередь, мощность
Затем важно, каким запасом энергии они обладают
Зависит этот параметр от емкости аккумуляторов и их числа. Третьим параметром является пиковая мощность потребления, означающая количество одновременно возможных подключений приборов. Еще одним важным параметров является номинальное напряжение, от которого зависит выбор дополнительного оборудования: инвертора, солнечной панели, контроллера, аккумулятора.
Преимущества солнечных батарей
Солнечная энергия — это перспективное направление, которое постоянно развивается. Они имеют несколько основных достоинств. Удобство использования, долгий срок службы, безопасность и доступность.
Положительные стороны применение данной разновидности аккумуляторных батарей:
- Возобновляемость – этот источник энергии практически не имеет ограничений притом бесплатный. По крайней мере на ближайшие 6.5 миллиардов лет. Нужно подобрать оборудование, установить его и использовать по назначению (в частном доме или коттеджном участке).
- Обильность – Поверхность земли в среднем получает около 120 тысяч терравват энергии что в 20 раз превышает нынешнее энергопотребление. Солнечные батареи для коттеджей или частных домов имеют огромный потенциал для использования.
- Постоянство – солнечная энергия постоянна поэтому человечеству не грозит перерасход в процессе ее использования.
- Доступность – солнечная энергия может вырабатывать на любой территории, при наличии естественного света. При этом чаще всего она применяется для отопления жилища.
- Экологическая чистота – солнечная энергетика является перспективной отраслью, которая в будущем заменит электростанции, работающие на невозобновляемых ресурсах: газ, торф, уголь и нефть. Безопасны для здоровья людей и домашних животных.
- При производстве панелей и монтаже солнечных электростанций в атмосферу не происходят значительные выбросы вредных или токсичных веществ.
- Бесшумность – выработка электроэнергии производится практически бесшумно, и поэтому этот вид электростанций лучше ветровых электростанций. Их работа сопровождается постоянным гулом из-за чего оборудование быстро выходит из строя, а сотрудники должны делать частые перерывы на отдых.
- Экономичность – при использовании солнечных батарей владельцы недвижимости ощущают значительное снижение коммунальных расходов на электроэнергию. Панели имеют долгий срок службы – производитель дает гарантию на панели от 20 до 25 лет. При этом обслуживание всей электростанции сводится к периодической (раз в 5-6 месяцев) очистке поверхностей панелей от грязи и пыли
Срок службы комплектующих
Так как солнечные батареи являются достаточно молодой технологией, то некоторые данные о сроке службы их компонентов могут быть примерными. Например, панели – на них производители обычно дают гарантию 10 лет. При этом, известно, что в первые 10 лет работы выработка электроэнергии панелью падает на 10 %, что прямо указывается в гарантийных обязательствах. Срок службы панелей предполагается 25-30 лет и по прошествии этого времени выработка падает на 20 % от первоначальной. То есть, за 25-30 лет панель теряет всего лишь пятую часть мощности и продолжает работать.
Разумеется, современные производители не имеют возможности подождать четверть века, чтобы точно выяснить, как будут вести себя солнечные панели, поэтому, вынуждены использовать специальные методы исчисления. Но один факт зафиксирован чётко – самая первая солнечная панель была запущена в работу 60 лет назад и работает до сих пор. При этом, падение её мощности составляет не больше чем 30 %.
Одна из первых современных солнечных панелей – до сих пор работаетИсточник dailymail.co.uk
Гарантия на инверторы от известных производителей составляет порядка 10 лет, а срок службы уже зависит от правильного использования устройства. Если нет регулярных перегрузок или скачков напряжения, то качественный инвертор может проработать не меньше солнечных панелей.
«Самое слабое звено» солнечных батарей – это аккумуляторы. Гарантия на эти устройства колеблется от 2 до 5 лет, а предполагаемый срок службы зависит от количества циклов разряда/заряда, но для современных устройств составляет 10-12 лет.
Как итог, если не случится каких-либо форс-мажорных обстоятельств, то солнечная батарея прослужит как минимум 25 лет. Если выбрана комплектация с аккумуляторами, то примерно через 10-12 лет их придётся заменить. Но к этому времени оборудование обычно окупается, плюс, панели и инвертор продолжают работать.
В большинстве случаев, солнечные батареи предпочитают комплектовать необслуживаемыми аккумуляторамиИсточник al-energy.ru
Выводы
Еще два десятилетия назад диковинкой казались микрокалькуляторы с фотоэлементами, что позволяло не менять в них «батарейку-таблетку» годами. Сейчас же мобильные телефоны со встроенной в заднюю крышку солнечной панелью никого не удивляют. А ведь это мелочь в сравнении с автомобилями и самолетами (пусть и беспилотными), которые научились передвигаться при помощи одной лишь солнечной энергии.
Будущее солнечных батарей видится точно таким же светлым, как само солнце. Хочется верить, что именно солнечные батареи позволят наконец-то вылечить смартфоны и планшеты от «розеткозависимости».