Рекристаллизация металла

Что такое рекристаллизация металлов: стадии, процесс, температура

Твердое состояние любых веществ бывает аморфным или кристаллическим. Классическим примером отсутствия решетки является стекло. В быту, знакомая всем снежинка, есть результат упорядоченного объединения молекул воды посредством снижения внутренней энергии. Похожие события происходят и в металлических конструкциях. Наиболее наглядная картина видна на цинковом покрытии и месте слома свинцовой болванки. Интересным и важным для машиностроения являются изучение течений формирования внутренних характеристик у сплавов железа. Получение монокристалла (материала, имеющего упорядоченное строение на больших линейных размерах) это сложная технологическая задача, выполнение которой возможно только в строго определенных условиях. В обычной жизни мы имеем дело с хаотичными структурами, содержащими сформированные зерна того или иного размера. Это впрямую влияет на физические характеристики изделий. Металловедение – большой раздел неорганической химии, и только в начале прошлого столетия к изучению стали подходить с научной точки зрения. До этого вся область находилась в зоне прикладного искусства и качество, например, клинка зависело только от опыта и чутья мастера. Давайте вместе разбираться, что такое рекристаллизация металлов, как протекает действие и для чего это необходимо.

Рекристаллизационный процесс

Схема комбинированного растяжения полимерной пленки на воздухе ( J, в жидкости ( 2, последовательно на воздухе и в жидкости ( 3 4.

Рекристаллизационные процессы, преобладающие при вытяжке пленок полиэтилена высокой плотности, сополимеров тетрафторэтиле-на и вянилиденфторида, менее чувствительны к воздействию жидкой среды.

Классификация методов выращивания кристаллов в многокомпонентных системах.

Рекристаллизационные процессы происходят без изменения фазового состояния. В процессах перекристаллизации используются фазовые превращения. Получение кристаллов из аморфной фазы называется кристаллизацией.

Рекристаллизационный процесс, совершающийся при дальнейшем нагреве наклепанного материала, представляет собой первичную рекристаллизацию. В результате нее уменьшается или полностью устраняется то дополнительное количество структурных дефектов, которое — было внесено предшествовавшей деформацией. Первичная рекристаллизация совершается в результате возникновения и движения большеугловых ( межзеренных) границ.

Схема микрофотографии эпитаксиального молибденового покрытия на поликристаллической молибденовой подложке. 1, 2, 3 — границы зерен.| Зависимости S ( f ( t ( а и V f ( t ( б для границ зерен /, 2, 3 ( 20.

Рекристаллизационные процессы, сопутствующие росту кристаллов покрытия, могут продолжаться при нагреве покрытий; при этом существенную роль играет предыстория покрытия и в первую очередь его дефектность.

Полигонизационные и рекристаллизационные процессы при отпуске могут задерживаться под действием добавок легирующих элементов, во-первых, из-за замедления диффузионных процессов переползания дислокаций и, во-вторых, в результате закрепления дислокаций, малоугловых и высокоугловых границ трудно коагулирующими дисперсными частицами специальных карбидоп с малым межчастичным расстоянием.

Подавление рекристаллизационных процессов при увеличенных скоростях деформирования изменяет и характер зависимости свойств от последеформационпой выдержки ( рис. 2.20) — при увеличении выдержки от 1 до 2 5 с предел текучести возрастает и только при больших выдержках уменьшается.

При горячей деформации рекристаллизационные процессы полностью снимают упрочнение, возникшее в результате наклепа.

Зависимость экспериментальной температуры плавления ПБД от соотношения скорости кристаллизации при рекристаллизации и скорости нагрева. Зависимость валовой скорости кристаллизации от температуры. Гь 72, Т3 Т — экспериментальные температуры плавления при скоростях нагрева соответственно 160, ЬО, 40, 20 К-мин 1. ( Стрелками показан подъем температуры в веществе во время кристал -. лизации. начало стрелки — температура среды кристаллизации, конец — значение подъема температуры в веществе за счет теплоты кристаллизации.

Для количественного анализа рекристаллизационных процессов в темлературном интервале плавления мы применили следующую методику, предварительно закристаллизованный образец путем быстрого нагрева доводили до рассматриваемой температуры в области плавления.

Для эффективного управления рекристаллизационными процессами необходимо знать механизм зарождения рекристаллизо-ванных зерен. Этот механизм в некоторых чертах остается еще дискуссионным, но о нем уже многое известно.

Определенную информацию о рекристаллизационных процессах дает рассеяние лучей. При косом сечении шлифа обнаруживаются характерные направления главных сдвигов в виде рыбьей кости. Оптически изотропная в нормальных условиях каменная соль в этом случае проявляет четкую анизотропию, причем наблюдаемые в поляризованном свете плоскости главных сдвигов в кристалле расположены в одном из заданных направлений. Термическая обработка при высоких температурах ( например, в течение 12 ч при 550 С) устраняет эту анизотропию.

Влияние скорости нагрева w на температуру плавления кристаллического полимера.

Процесс – рекристаллизация

Поэтому процесс рекристаллизации начинается, по-видимому, с момента возникновения новой фазы. Характер изменения удельной поверхности авторы связывают с тем, что в процессе гидратации имеют место два противоположно направленных процесса: диспергирование и кристаллизация.  

На процессы рекристаллизации влияют условия деформации: температурный интервал горячего деформирования и степень деформации. Нагрев под деформацию при температурах ниже полиморфного превращения практически не вызывает роста макрозерна; микроструктура в процессе деформации при этих температурах сильно измельчается.  

Поскольку процессы рекристаллизации связаны с перегруппировкой участков длинных молекулярных цепей, их скорость невелика и часто оказывается соизмеримой с экспериментально задаваемыми скоростями повышения температуры. В этом интервале условий картина плавления ( в частности, фиксируемая методами калориметрии или дифференциального термического анализа) часто зависит от скорости нагревания испытываемого образца. Например, при медленном нагревании на кривой ДТА образца в области температур ниже Т л может появиться несколько пиков, отражающих последовательные процессы плавления и рекристаллизации.  

Схемы режимов механотермических обработок ( на 1. 2. 3. 4 отжиг при температуре 600 С. / – 30 мин. 2 – 8 час. 3 – 25 час. 4 – 100 час. 5 – 25 час. при температуре 900 С-2 час.  

Происходящие процессы рекристаллизации показаны в гистограммах распределения зерен по размерам при различных режимах меха, нотермических обработок.  

Исследование процесса рекристаллизации в дисперсной системе должно быть синтетическим, учитывающим как закономерности дисперсной системы в целом, так и индивидуальные особенности составляющих ее частей.  

Протекание процессов рекристаллизации сопровождается рез – – ] ким снижением прочности наклепанного металла и для работы материалов при высоких температурах обычно недопустимо. Поэтому Трекр является верхней температурной границей применения теплоустойчивых и жаропрочных материалов.  

Развитие процесса рекристаллизации в сплавах МА2 и МАЗ при деформации образцов на гидравлическом прессе с качественной стороны мало отличается от рекристаллизации чистого магния ( фиг.  

Схема изменения формы зерен при деформации ( сжатии металла.  

Сущность процесса рекристаллизации заключается в том, что в предварительно деформированном металле под влиянием достаточно высокой температуры подвижность атомов увеличивается, в результате чего происходят перемещения, которые сопровождаются восстановлением кристаллической решетки, искаженной под действием приложенных сил. Деформированный металл под влиянием температурного воздействия перекристалли-зовывается, восстанавливая присущую ему устойчивую структуру и устраняя эффект наклепа. При этом необходимо иметь в виду, что рекристаллизация, как установлено, проходит только при температурах выше 0 4 от абсолютной температуры плавления металла. Абсолютная температура – температура, выраженная в градусах Кельвина, К.  

С процессами рекристаллизации связаны, в частности, явления у ста л ости и п ол з у чести металлов. Металл, подвергающийся таким переменным нагрузкам в течение длительного времени, может неожиданно разрушиться при нагрузке, гораздо меньшей, чем при испытаниях данного металла на прочность. Ползучесть заключается в деформации металла при нагрузках, значительно меньше допускаемых при механических испытаниях. Места излома ( разрушения) металлов при явлениях усталости и ползучести характеризуются структурой, резко отличающейся от структуры неразрушенной части металла.  

С процессами рекристаллизации связаны, в частности, явления у ста л ости и п о л з у ч е сти металлов. Металл, подвергающийся таким переменным нагрузкам в течение длительного времени, может неожиданно разрушиться при нагрузке, гораздо меньшей, чем при испытаниях данного металла на прочность. Ползучесть заключается в деформации металла при нагрузках, значительно меньше допускаемых при механических испытаниях. Места излома ( разрушения) металлов при явлениях усталости и ползучести характеризуются структурой, резко отличающейся от структуры неразрушенной части металла.  

В процессе рекристаллизации в золях и гелях уменьшается удельная поверхность, а следовательно, и величина адсорбции. В результате рекристаллизации происходит десорбция ранее адсорбированных веществ.  

В процессе рекристаллизации они изменяются сильно. Последующий процесс роста зерен слабо влияет на эти хар актеристики.  

Схема зависимости числа рефлексов на дебаевском.  

Понятие деформации

Под термином «деформация» понимаются любые изменения структуры, формы, размеров тел. Она происходит под влиянием напряжений — сил, которые действуют на единицу площади сечения заготовок или деталей. Деформация металла обусловлена:

  • внешними силами;
  • усадкой;
  • структурными превращениями;
  • внутренними физико-механическими процессами.

Примеры прилагаемых к телу нагрузок:

  • сжатие – нагрузка прикладывается соосно по направлению к телу;
  • растяжение – возникает при продольном от тела приложении нагрузки (соосно или параллельно плоскости, в которой находятся точки крепления тела);
  • изгиб – нарушение прямолинейности главной оси тела;
  • кручение – возникает при приложении к телу крутящего момента.

Механизм и виды деформирования изучаются материаловедением, физикой твердого тела, кристаллографией.

Твердые тела подвержены двум видам деформации:

  1. упругой;
  2. пластической.

В таблице приведены сравнительные характеристики этих явлений.

Критерий сравненияВиды
УпругаяПластическая (остаточная, необратимая)
Поведение атомов кристаллической решетки под нагрузками· сдвигаются на промежутки меньшие, чем межатомное расстояние;

· блоки кристалла поворачиваются незначительно

· перемещаются на расстояния, большие межатомных;

· в структуре возникают остаточные изменения;

·  нет макроскопических нарушений сплошности металла

Деформирование формы и структуры после прекращения нагрузкиустраняется полностьюне устраняется
Вызывается действием напряжений· нормальных;

· невысоких касательных

больших касательных
Показатели сопротивлениямодуль упругоститеоретическая прочность
Результат развитиянеобратимость наступает, когда напряжения достигают предела упругости; упругая переходит в пластическую.возможность вязкого разрушения путем сдвига.

Пластическое деформирование ведет к модификациям в структурах металлов и их сплавов, а, следовательно, к изменениям их свойств.

Прерывистая динамическая рекристаллизация

Прерывистая рекристаллизация неоднородна; есть четкие стадии зарождения и роста. Это обычное явление для материалов с низкой энергией дефекта упаковки. Затем происходит зародышеобразование, в результате чего образуются новые зерна без деформации, которые поглощают ранее существовавшие деформированные зерна. Это легче происходит на границах зерен, уменьшая размер зерна и тем самым увеличивая количество центров зародышеобразования. Это дополнительно увеличивает скорость прерывистой динамической рекристаллизации.

Прерывистая динамическая рекристаллизация имеет 5 основных характеристик:

  • Рекристаллизация не происходит, пока не будет достигнута пороговая деформация.
  • Кривая напряжения-деформации может иметь несколько пиков – универсального уравнения не существует.
  • Зарождение зародышей обычно происходит по уже существующим границам зерен.
  • Скорость рекристаллизации увеличивается с уменьшением исходного размера зерна.
  • Имеется постоянный размер зерна, который достигается по мере протекания рекристаллизации.

Прерывистая динамическая рекристаллизация вызвана взаимодействием деформационного упрочнения и восстановления. Если аннигиляция дислокаций происходит медленно по сравнению со скоростью, с которой они генерируются, дислокации накапливаются. После достижения критической плотности дислокаций зарождение происходит на границах зерен. Миграция границ зерен, или перенос атомов от большого ранее существовавшего зерна к меньшему ядру, позволяет расти новым ядрам за счет ранее существовавших зерен. Зарождение может происходить из-за вздутия существующих границ зерен. Выпуклость образуется, если субзерна, примыкающие к границе зерен, имеют разные размеры, вызывая несоответствие энергии от двух субзерен. Если балдж достигнет критического радиуса, он успешно перейдет в устойчивое зародыш и продолжит свой рост. Это можно смоделировать с помощью теорий Кана, относящихся к зарождению и росту.

Прерывистая динамическая рекристаллизация обычно дает микроструктуру “ожерелья”. Поскольку рост новых зерен энергетически выгоден по границам зерен, образование новых зерен и их вздутие предпочтительно происходит по уже существовавшим границам зерен. Это создает слои новых, очень мелких зерен вдоль границы зерен, первоначально не затрагивая внутреннюю часть ранее существовавшего зерна. По мере продолжения динамической рекристаллизации происходит поглощение нерекристаллизованной области. По мере продолжения деформации рекристаллизация не поддерживает когерентность между слоями новых зародышей, создавая случайную текстуру.

Описание первичной рекристаллизации

Деформированный металл или свежий прокат переживает естественный процесс формирования ячеек с наиболее энергетически выгодными формами. Физическое воздействие смещает слои, при этом структура подвержена растяжению и, наоборот, сжатию в других точках. Этот дисбаланс склонен к возврату в естественное нормальное состояние. При комнатных температурах и минимальном нагреве эти события происходят с очень низкой скоростью, так как колебательных движений атомов недостаточно. Резкое ускорение возникает при увеличении внутренней энергии. Оптимальный показатель зависит от веса первичного элемента и степени связи с соседями, то есть от химического состава.

Отжиг первого рода (І-го рода)

Отжиг І рода – термическая операция, состоящая в нагреве металла в неустойчивом состоянии, полученном предшествующими обработками, для приведения металла в более устойчивое состояние. Этот вид отжига может включать в себя процессы гомогенизации, рекристаллизации, снижения твердости и снятия остаточных напряжений. Особенность этого вида отжига в том, что указанные процессы протекают независимо от того происходят ли фазовые превращения при термообработке или нет. Различают гомогенизационный (диффузионный), рекристаллизационный отжиг и отжиг, уменьшающий напряжения и снижающий твердость.

Гомогенизационный отжиг

Гомогенизационный отжиг – это термическая обработка, при которой главным процессом является устранение последствий дендритной и внутрикристаллитной ликвации в слитках сталей. Ликвация повышает склонность стали, обрабатываемой давлением, к хрупкости, анизотропии свойств и таким дефектам, как шиферность (слоистый излом) и флокены. Устранение ликвации достигается за счет диффузионных процессов. Для обеспечения высокой скорости диффузии сталь нагревают до высоких (1000–1200 °С) температур в аустенитной области. При этих температурах делается длительная (10–20 час.) выдержка и медленное охлаждение с печью. Диффузионные процессы наиболее активно протекают в начале выдержки. Поэтому во избежание большого количества окалины, охлаждение с печью обычно проводят до температуры 800 — 820°С, а далее на воздухе. При гомогенизационном отжиге вырастает крупное аустенитное зерно. Избавиться от этого нежелательного явления можно последующей обработкой давлением или термической обработкой с полной перекристаллизацией сплава. Выравнивание состава стали при гомогенизационном отжиге положительно сказывается на механических свойствах, особенно пластичности.

Рекристаллизационный отжиг стали

Рекристаллизационный отжиг, применяемый для сталей после холодной обработки давлением, – это термическая обработка деформированного металла или сплава. Может применять как окончательная, так и промежуточная операция между операциями холодного деформирования. Главным процессом этого вида отжига являются возврат и рекристаллизация соответственно. Возвратом называют все изменения в тонкой структуре, которые не сопровождаются изменениями микроструктуры деформированного металла (размер и форма зерен не изменяется). Возврат сталей происходит при относительно низких (300–400°С) температурах. При этом процессе наблюдается восстановление искажений кристаллической решетки.

Рекристаллизацией называют зарождение и рост новых зерен с меньшим количеством дефектов кристаллического строения. В результате рекристаллизации образуются совершенно новые, чаще всего равноосные кристаллы. Между температурным порогом рекристаллизации и температурой плавления имеется простое соотношение: ТР ≈ (0,3–0,4)ТПЛ., что составляет для углеродистых сталей 670–700°С.

Отжиг для снятия напряжений

Отжиг для снятия напряжений – это термическая обработка, при которой главным процессом является полная или частичная релаксация остаточных напряжений. Такие напряжения возникают при обработке давлением или резанием, литье, сварке, шлифовании и других технологических процессах. Внутренние напряжения сохраняются в деталях после окончания технологического процесса и называются остаточными. Избавиться от нежелательных напряжений можно путем нагрева сталей от 150 до 650°С в зависимости от марки стали и способа предыдущей обработки.

Высокий отжиг стали

Эта операция часто называется высоким отпуском. После горячей пластической деформации сталь имеет мелкое зерно и удовлетворительную микроструктуру. Такое состояние сталь получает при ускоренном охлаждении после пластической деформации. Однако в структуре могут быть составляющие: мартенсит, бейнит, троостит и т. д. Твердость металла при этом может быть достаточна высока. Для повышения пластичности и соответственно снижения твердости делается высокий отжиг. Его температура ниже критической Ас1 и зависит от требований к металлу для следующей операции обработки.

Возврат и рекристаллизация металла при его обработке

При нагреве упрочненного металла или сплава в нем происходят обратимые процессы, приводящие к частичной или полной потере прочности. При нагреве металла повышается кинетическая энергия атомов, усиливаются их тепловые колебания, вследствие чего атомы получают возможность возвращаться в равновесное состояние.

Нагрев упрочненного металла до сравнительно невысоких температур — (0,25-0,30) Тпл — обеспечивает частичное снятие внутреннего напряжения, а следовательно, и некоторое восстановление пластических свойств. Это явление называется возвращением (отдыхом).

Рисунок. 1.9. Схема изменения структуры металла после холодной деформации и нагрева: а — до деформации, б — после деформации; в — после возвращения г — после рекристаллизации

Как видно из рис. 1.9, в в результате возвращения форма и ориентировка зерен, созданная деформацией, не меняется, а кристаллическая решетка восстанавливается.

Возвращение повышает сопротивление металла коррозии и резко уменьшает склонность к самопроизвольному растрескиванию, которое, например, особенно часто наблюдается в латунных деталях, полученных холодной штамповкой. При нагреве упрочненного металла выше температуры возврата в нем протекает процесс рекристаллизации (далее «Р.»)

При температуре Р. энергетический потенциал атомов достигает такой величины, что они получают возможности перегруппировки и интенсивного обмена местами. В результате этого при рекристаллизации восстанавливается микроструктура металла (Рис. 1.9, г). После Р. исчезает упорядоченное ориентировки зерен и металл приобретает первоначальные свойств.

Процесс рекристаллизации протекает со скоростью, зависящей от температуры и степени деформации, и чем выше температура и степень предварительной деформации, тем больше скорость рекристаллизации.

Температура начала Р. зависит от состава сплава и степени деформации. А.А. Бочвара установил зависимость между температурой начала рекристаллизации Тр и абсолютной температурой плавления Тпл и выразил это в виде эмпирической формулы

Тр = 0,4Тпл (1.1);

Формула не учитывает влияния степени деформации на температуру Р..

Связь между величиной зерна, степени деформации и температурой рекристаллизации изображается объемными диаграммами получаемыми экспериментальным путем для каждого металла или сплава. Диаграмма рекристаллизации дает возможность проследить за изменением структуры сплава при данных условиях обработки давлением и выбрать как температуру, так и степень деформации, обеспечивающие получение желаемой величины зерна.

На рис. 1.10, а приведена диаграмма Р. железа, деформированного в холодном состоянии. Она показывает, что с увеличением степени деформации величина зерна уменьшается, а температура Р. снижается; с повышением температуры рекристаллизации при данной ступени деформации зерно растет. При больших степенях деформации Тр не оказывает заметного влияния на рост зерна. Диаграммы рекристаллизации для других металлов и сплавов имеют аналогичный характер.

Тр дает возможность установить границы температуры горячей и холодной обработок металлов давлением. Если обработка давлением происходит при температурах ниже Тр и сопровождается клеветой, то такая обработка называется холодной. Если обработка давлением происходит при температуре выше Тр и не сопровождается клеветой, то она называется горячей.

Рисунок.1.10. Диаграммы рекристаллизации: а — для железа, деформированного в холодном состоянии, б — для низкоуглеродистой стали деформированной в горячем состоянии

Источник → список литературы.

Прокатка

При прокатке зерна меняют свою форму и ориентировку. Они сплющиваются и вытягиваются в направлении прокатки. Возникает текстура деформации. Кроме того, в зернах повышается концентрация структурных несовершенств.

Такое состояние металла является метастабильным. Для перевода в более стабильное состояние металл нагревают.

При этом, в искаженных участках микроструктуры возникают и растут новые, неискаженные равноосные зерна. Это и есть первичная рекристаллизация.

Возникшие зерна значительно меньше по размерам, чем исходные. При дальнейшем нагреве эти зерна укрупняются. Происходит собирательная, либо вторичная рекристаллизация. (В фильме эти стадии не рассматриваются).

В целом, под рекристаллизацией понимают процесс замены одних зерен данной фазы, другими зернами той же фазы, с меньшей энергией.

Принцип

Многие процессы изготовления металла включают холодную обработку, такую как лист холодной прокатки и листовая сталь, волочение проволоки и глубокая волочение. В связи с металлургическими изменениями, которые происходят с металлом при холодной обработке, пластичность металла уменьшается с увеличением объема холодной обработки. Наступает момент, когда дополнительная холодная обработка невозможна без образования трещин в металле. На этом этапе необходим рекристаллизационный отжиг металла.

Во время этого процесса отжига происходят металлургические изменения, которые возвращают металл в его состояние после холодной обработки. Эти изменения приводят к снижению текучести металла и прочности на растяжение, а также к повышению его пластичности, что обеспечивает дальнейшую холодную обработку. Для того чтобы эти изменения произошли, металл должен быть нагрет выше температуры его рекристаллизации. Температура рекристаллизации для конкретного металла зависит от его состава.

Металлургические эффекты холодной обработки

Во время холодной обработки увеличивается число дислокаций в металле по сравнению с его предварительно холодной обработкой. Дислокации являются дефектами в расположении атомов в металле. Увеличение числа дислокаций приводит к увеличению выхода металла и прочности на разрыв и снижению его пластичности. После определенного количества холодных работ металл не может быть подвергнут холодной обработке без растрескивания. Степень холодной обработки, которую конкретный металл может выдержать перед растрескиванием, зависит от его состава и микроструктуры.

Металлургические эффекты рекристаллизационного отжига

Во время рекристаллизационного отжига в холодном металле образуются новые зерна. Эти новые зерна имеют значительно уменьшенное количество дислокаций по сравнению с металлом холодной обработки. Это изменение возвращает металл в состояние после холодной обработки, с более низкой прочностью и повышенной пластичностью.

В течение продолжительного времени при температуре отжига некоторые из вновь образованных зерен растут за счет соседних зерен. Некоторое дальнейшее снижение прочности и повышение пластичности увеличивается по мере того, как средний размер зерна увеличивается во время фазы роста зерна в процессе отжига.

Конечный размер зерна зависит от температуры отжига и времени отжига. Для конкретной температуры отжига, поскольку время при температуре увеличивается, размер зерна увеличивается. В течение определенного времени отжига по мере увеличения температуры размер зерна увеличивается. Кусок металла с крупными зернами имеет меньшую прочность и пластичность, чем кусок металла из того же сплава с более мелкими зернами.

Металл после рекристаллизационного отжига

На рисунке показаны микрофотографии латунного сплава, который был подвергнут холодной прокатке до 50% его первоначальной толщины и отожжен при двух разных температурах. На рисунке слева показана микроструктура холоднокатаного образца. Центральная фигура показывает микроструктуру образца, который был подвергнут холодной прокатке и затем отожжен при 1022 ° F (550 ° C) в течение 1 часа. На рисунке справа показана микроструктура образца, который был подвергнут холодной прокатке и затем отожжен при 1202 ° F (650 ° C) в течение 1 часа.

Холоднокатаный образец имел предел текучести 80 тыс.фунтов / кв.дюйм (550 МПа). Образец, который был отожжен при 1022 ° F (550 ° С) в течение 1 часа, имел предел текучести 11 тыс. Фунтов / кв. Дюйм (75 МПа). В этом образце много мелких зерен. Образец, который был отожжен при 1202 ° F (650 ° C) в течение 1 часа, имел предел текучести 9 тыс. Фунтов / кв. Дюйм (60 МПа). Меньше крупных зерен присутствовало в этом образце по сравнению с центральным образцом.

Другая причина перекристаллизации отжига

В дополнение к включению дополнительной холодной обработки, рекристаллизационный отжиг также используется в качестве конечного этапа обработки для получения металлического листа, пластины, проволоки или прутка с определенными механическими свойствами

Регулирование температуры и времени отжига, скорости нагрева до температуры отжига и количества холодной обработки перед отжигом важно для получения нужного размера зерна и, следовательно, требуемых механических свойств

Рекристаллизация

Подробности Категория:

РЕКРИСТАЛЛИЗАЦИЯ

, процесс вторичной кристаллизации деформированных металлов при нагреве. Для рекристаллизации необходимы два условия: 1) состояние наклепа металла и 2) нагрев после наклепа. Технический металл в литом или отожженном (ненаклепанном) состоянии представляет собой некоторую массу кристаллов, по границам которых располагается т. н. межклеточное вещество, которое мешает кристаллам соприкасаться между собой. Кроме того, при кристаллизации сплава (переход из жидкого состояния в твердое) между кристаллами остаются некоторые промежутки — поры, незаполненные металлом (усадочные микропоры). Деформацией кристаллы металла разрушаются, разрывают оболочку из межклеточного вещества и частично соприкасаются чистыми изломами меж собой, уничтожая микропоры. При низкой температуре энергия атомов кристаллической решетки не может преодолеть сопротивления вязкости твердого металла, а потому деформированные кристаллы на холоде остаются раздробленными, но при повышении температуры начинается ориентация атомов разрушенной кристаллической решетки, и образовавшиеся кристаллы начинают расти за счет обломков прежних кристаллов до размеров, иногда значительно больших, чем первоначальные. Та низшая температура, при которой начинается этот процесс кристаллизации, и называется температура рекристаллизации.

Очевидно эта температура зависит от состояния и структуры рекристаллизующегося металла (чем больше имеется свежих стыков осколков кристаллов, чем тоньше, т. е. меньше межклеточного вещества в металле, иначе — чем он чище, тем ниже лежит начальная температура рекристаллизации), но в известном пределе эта температура является функцией только природы металла. А. А. Бочвар на основании некоторых теоретических выводов, подтвержденных рядом практических наблюдений, предлагает такую зависимость:

Ниже в таблице приведены температуры плавления и температуры рекристаллизации некоторых металлов по Бочвару.

По мере повышения нагрева процесс рекристаллизации идет быстрее. Из опыта найдено, что рост зерна кристалла тем больше, чем выше температура (при данной деформации) и чем слабее деформация (при данной температуре). Имеется некоторая «критическая» величина деформации (в пределах около 5%), вызывающая наибольший рост кристаллизации. Всякая прослойка, например, другая составляющая сплава, мешает росту кристаллов; например, феррит стали, содержащий до 0,10—0,12% С, способен к образованию больших кристаллов, а в стали с большим содержанием С (0,2— 0,3% и выше) перлитные островки мешают ему образовать крупные кристаллы. Крупнокристаллическое строение кристаллов вследствие рекристаллизации сообщает всякому металлу малое сопротивление удару, поэтому надо избегать при технологических процессах условий, вызывающих рост кристалла; как предупредительную меру против этого следует считать высокий нагрев, т. е. отжиг металла.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий