Монтажный блок. Увеличиваем возможности подъёмных механизмов

Основные характеристики оборудования

С учетом разнообразия моделей, существует ряд параметров, по которым производится оценка рабочих качеств устройств:

  • Грузоподъемность. В среднем ГПМ рассчитаны на работу с грузами массой 5-10 т. Однако имеются грузозахватные приспособления, которые используются в комплексе с грузовым оборудованием крупного формата, способным оперировать с тяжестями весом до 100 т. Одиночные механизмы рассчитаны на работу в небольших цехах, автомастерских, складских условиях и, чаще всего, ориентированы на работу с грузами весом 500-700 кг;
  • Высота подъема. Для талей, лебедок, кранов данный показатель может достигать 15-20 см.

Горизонтальное перемещение грузов зависит от местной инфраструктуры. Чаще всего на объектах используются рельсы и роликовые механизмы, по которым происходит перемещение устройств. Существуют разные типы грузоподъемного оборудования, в зависимости от моделей машин обеспечивается разная скорость перемещения продукции – от 3 до 8 м/с.

Каким образом мы упрощаем подъем грузов?

Грузовой полиспаст – это система, состоящая из веревок и блоков, благодаря которой можно выиграть в эффективной силе при потере в длине. Принцип довольно прост. В длине мы проигрываем ровно столько, во сколько раз оказался выигрыш в силе. Благодаря этому золотому правилу механики можно поднимать грузы большой массы, не прилагая при этом больших усилий. Что в принципе не так критично. Приведем пример. Вот вы выиграли в силе в 8 раз, при этом вам придется вытянуть веревку длиной в 8 метров, чтобы поднять объект на высоту 1 метр.

Применение таких приспособлений обойдется вам дешевле, чем аренда подъемного крана, к тому же, вы можете сами контролировать выигрыш в силе. У полиспаста есть две разные стороны: одна из них неподвижная, которая крепится на опоре, а другая – подвижная, которая цепляется на самом грузе. Выигрыш в силе происходит благодаря подвижным блокам, которые крепятся на подвижной стороне полиспаста. Неподвижная часть служит только для изменения траектории движения самой веревки.

Виды полиспастов выделяют по сложности, четности и кратности. По сложности есть простые и сложные механизмы, а кратность обозначает умножение силы, то есть, если кратность будет равна 4, то теоретически вы выигрываете в силе в 4 раза. Также редко, но все же применяется скоростной полиспаст, такой вид дает выигрыш в скорости перемещения грузов при совсем малой скорости элементов привода.

Какие бывают блоки

Блоки и системы блоков были известны человечеству с античных времен. Они служили для подъема грузов на высоту или перемещения грузов. Блоки выполняют важную задачу — изменяют направление действия силы и дают выигрыш в силе.

Блок — это простой механизм, который используют для преобразования силы.

Различают подвижный и неподвижный блоки.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут. Неподвижный блок представляет собой диск, который вращается вокруг своей оси, и имеет желоб по окружности

Желоб предназначен для скольжения в нем цепи, ремня, каната и т.д. У неподвижного блока ось закреплена, и при подъеме грузов не поднимается и не опускается. 

Неподвижный блок представляет собой диск, который вращается вокруг своей оси, и имеет желоб по окружности. Желоб предназначен для скольжения в нем цепи, ремня, каната и т.д. У неподвижного блока ось закреплена, и при подъеме грузов не поднимается и не опускается. 

Неподвижный блок можно представить в виде равноплечего рычага, у которого плечи сил равны радиусу колеса. Поэтому неподвижный блок не дает выигрыша в силе, а лишь позволяет менять направление действия силы.

Подвижный блок представляет собой диск, ось которого перемещается вместе с грузом. Можно представить в виде рычага с плечами разной длины. Подвижный блок дает выигрыш в силе в два раза и проигрыш в расстоянии так же в два раза. При использовании подвижного блока, нужно приложить в два раза меньше силы для подъема груза, но нить, к которой подвешен груз, должна быть в два раза длиннее. 

Для увеличения эффективности используют системы блоков.

Примечание

Объединив подвижные и неподвижные блоки в систему можно получить выигрыш в силе в несколько раз, а также изменить направление прикладываемой силы.

Запасовка полиспастов

Запасовка – процедуру изменения местоположения шкивов и дистанции между ними. Целью этой операции является регулирование скорости и высоты подъема грузов в соответствии с определенной схемой прохождения троса по блокам грузоподъемного механизма. Существуют следующие разновидности запасовки:

  1. Однократная. На крюке закрепляется 1 веревка, которая проводится через все неподвижные блоки и наматывается на барабан.
  2. Двукратная. Первый конец каната крепят на головке поворотного элемента крана, второй – на лебедке. Этот способ запасовки может применяться на кранах стрелового типа.
  3. Четырехкратная. 2 рабочих ветви троса проводятся через шкивы рабочей стрелы. Соседние полиспасты скрепляются между собой при помощи статичного блока, устанавливаемого на стойке платформы. Этот метод запасовки используется для устройств с большой грузоподъемностью.

Существует также переменная запасовка. Она бывает как двукратной, так и четырехкратной. Подвижные ролики устанавливаются на нескольких подвижным обоймах, удерживаемых при помощи каната. Кратность запасовки изменяется посредством опускания подвески крюка на опору при сматывании веревки.

Правило рычага

По какому принципу работает рычаг? Ответ на этот вопрос содержится в понятии о моменте силы. Последним называют такую величину, которая получается в результате умножения плеча силы на ее модуль, то есть:

Плечо силы d представляет собой расстояние от точки опоры до точки приложения силы F.

Когда рычаг выполняет свою работу, то на него действуют три различные силы:

  • внешняя сила, приложенная, например, человеком;
  • вес груза, который человек стремится переместить с помощью рычага;
  • реакция опоры, действующая со стороны опоры на балку рычага.

Реакция опоры уравновешивает две другие силы, поэтому рычаг не совершает поступательного движения в пространстве. Чтобы он не совершал еще и вращательное движение, необходимо, чтобы сумма всех моментов сил оказалась равной нулю. Момент силы всегда отсчитывается относительно некоторой оси. В данном случае этой осью является точка опоры. При таком выборе оси плечо воздействия силы реакции опоры будет равно нулю, то есть эта сила создает нулевой момент. На рисунке ниже показан типичный рычаг первого рода. Стрелками отмечены внешняя сила F и вес груза R.

Записываем сумму моментов для этих сил, имеем:

Равенство нулю суммы моментов обеспечивает отсутствие вращения плеч рычага. Момент силы F взят с отрицательным знаком потому, что эта сила стремится повернуть рычаг по часовой стрелке, сила же R стремится совершить этот поворот против часовой стрелки.

Переписывая это выражение в следующих формах, получим условия равновесия рычага:

Мы получили записанные равенства, используя концепцию момента силы. В III же веке до н. э. греческие философы не знали об этой физической концепции, тем не менее Архимед установил обратную зависимость отношения действующих на плечи рычага сил от длины этих плеч в результате экспериментальных наблюдений.

Записанные равенства говорят о том, что уменьшение длины плеча dR способствует появлению возможности с помощью небольшой силы F и длинного плеча dF поднимать большие веса R грузов.

Виды грузоподъёмных машин

Все виды грузоподъемных машин и механизмов классифицируют по нескольким признакам:

  • назначение (транспортировка, подъём, разгрузка/погрузка);
  • степень подвижности (самоходные, статичные, передвижные);
  • типу материалов (сыпучие, пеллетированные, штучные, жидкие);
  • уровень автоматизации;
  • характер движения (непрерывное, периодическое).

Кроме того, выпускаются агрегаты, отличающиеся по принципу работы: ручные и электрические устройства, агрегаты с пневмоприводом.

Домкраты

Одно из основных преимуществ применения домкрата в качестве грузоподъёмного приспособления – точность позиционирования поднимаемых конструкций независимо от их геометрии, габаритов и веса. Выпускаются механические, гидравлические, электрические, пневматические модели с широким диапазоном характеристик.

При их выборе за основу принимается грузоподъёмность (для винтовых домкратов её максимум составляет 1 т, для гидравлических – 100 т) и высота подъёма (ход штока). Также предлагаются специализированные модели. Чаще всего они используются на СТО для опрокидывания машин на один бок, подставки, применяемые во время ремонта для страховки других удерживающих приспособлений.

Лебедочные грузоподъемные механизмы

К грузоподъемным машинам относят лебёдочные механизмы. Они применяются в строительстве, сервисном обслуживании, на производстве для перемещения конструкций в горизонтальном или вертикальном направлении. Выпускаются модели, оснащённые приводом разного типа:

  • червячные (они отличаются большим передаточным числом);
  • цепные, отличающиеся высокой эффективностью;
  • барабанные электроустройства с коммутационной аппаратурой с номинальным напряжением 220 или 380 В;
  • рычажные, которые выделяются минимальными размерами и весом.

Основные критерии при выборе – тяговое усилие, канатоёмкость барабана, скорость движения троса, возможности регулировки рабочих параметров, вес изделия, грузоподъёмность.

Тали

Предлагается большой выбор модификаций талей с широким диапазоном характеристик. Это позволяет подобрать технику, учитывая особенности будущей эксплуатации. Отличительные особенности этого вида агрегатов – высокая надёжность, сравнительно высокие показатели скорости и высоты перемещения, грузоподъёмности. Тали часто применяют как вспомогательное устройство в комплексе с крановой техникой любого типа.

Для обеспечения высокой производительности, если важна скорость выполнения операций, речь идёт о конструкциях с большим весом выбирают электрические модели. При возможных перебоях в электроснабжении, на площадках с невысокой интенсивностью работы преобладают ручные тали. Также стоит учитывать при покупке необходимость перемещения механизма: есть стационарные и передвижные агрегаты.

Тельферы

Эффективной заменой крановой технике при погрузочно-разгрузочных работах становятся тельферы. Выпускаются следующие типы таких устройств: цепные и канатные. Грузоподъёмность агрегатов составляет до 25 т при высоте подъёма до 70 м. Управление может быть ручным или дистанционным (с помощью пульта ДУ).

Комплектация кареткой повышает функциональность модели за счёт возможности перемещения тельфера по территории цеха или строительной площадки. При необходимости обеспечения повышенной скорости движения каната или цепи технику оснащают частотным преобразователем.

Блоки и полиспасты

Блоки широко применяются в качестве самостоятельного или вспомогательного агрегата для подъёма конструкций. Они выпускаются в одно- и многороликовом исполнении. По назначению блоки делят на отводные и грузовые. Первые применяют для изменения направления движения троса, вторые – для перемещения по прямой.

Полиспасты – составная часть подъёмных агрегатов, которая представляет собой систему соединённых канатами блоков. Разделяют скоростные и силовые устройства (выбор зависит от поставленных задач). В рамках одной грузоподъёмной установки может использовать одновременно несколько полиспастов. Такое решение более эффективно и позволяет снизить нагрузку на каждый из них за счёт равномерного распределения усилий.

Как работают блоки?

Информация о материале
Категория: Физика

Блок состоит из одного или нескольких колес (роликов), огибаемых цепью, ремнем или тросом. Так же, как и рычаг, блок уменьшает усилие, необходимое для подъема груза, но плюс к этому может изменять направление прикладываемой силы.

За выигрыш в силе приходится расплачиваться расстоянием: чем меньшее усилие требуется для подъема груза, тем больше путь, который должна пройти точка приложения этого усилия. Система блоков увеличивает выигрыш в силе за счет использования большего количества грузонесущих цепей. Подобные силосберегающие устройства имеют очень широкий диапазон применения — от перемещения на высоту массивных стальных балок на строительных площадках до подъема флагов.

Как и в случае других простых механизмов, изобретатели блока неизвестны. Хотя, возможно, блоки существовали и раньше, первое упоминание о них в литературе относится к пятому веку до нашей эры и связано с использованием блоков древними греками на кораблях и в театрах.

Установленные на подвесном рельсе подвижные системы блоков (рисунок сверху) широко распространены на сборочных линиях, поскольку существенно облегчают перемещение тяжелых деталей. Прикладываемая сила (F) равна частному от деления веса груза (W) на используемое количество поддерживающих его цепей (n).

Одинарные неподвижные блоки

Этот простейший тип блока не уменьшает усилие, необходимое для подъема груза, но зато изменяет направление прикладываемой силы, как это показано на рисунках сверху и справа вверху. Неподвижный блок на верхней части флагштока облегчает подъем флага, позволяя тянуть шнур, к которому привязан флаг, вниз.

Одинарные подвижные блоки

Одинарный блок, имеющий возможность перемещения, уменьшает наполовину усилие, требующееся для подъема груза. Однако уменьшение вдвое прикладываемой силы означает, что точка ее приложения должна пройти в два раза больший путь. В данном случае сила равна половине веса (F=1/2W).

Системы блоков

При использовании комбинации неподвижного блока с подвижным прикладываемая сила кратна общему количеству грузонесущих цепей. В данном случае сила равна половине веса (F=1/2W).

Груз, подвешенный через блок вертикально, позволяет туго натягивать горизонтальные электрические провода.

Подвесной подъемник (рисунок сверху) состоит из цепи, обвитой вокруг одного подвижного и двух неподвижных блоков. Подъем груза требует прикладывания силы, составляющей всего лишь половину от его веса.

Полиспаст, обычно используемый в больших подъемных кранах (рисунок справа), состоит из комплекта подвижных блоков, к которому подвешивается груз, и комплекта неподвижных, прикрепленного к стреле крана. Получая выигрыш в силе от столь большого количества блоков, кран может поднимать очень тяжелые грузы, например, стальные балки. В данном случае сила (F) равна частному от деления веса груза (W) на количество поддерживающих тросов (n).

Зачем нужно реле РБ

Пояснение к рисунку ниже я сделал в двух формах: в виде рисунка с текстом, с необходимостью прокрутки, и собственно в виде текста. Пользуйтесь той формой, которую находите более удобной.

Реле РБ, 1РУ и 2РУ имеют тип РЭВ (возможно, РЭВ 812, но точно не знаю). Чем отличаются реле такого типа? Когда на его катушке появляется напряжение, контакты замыкаются или размыкаются сразу же, без задержки, как и у реле других типов. Когда же напряжение исчезает, контакты возвращаются в предыдущее (нормально замкнутое или разомкнутое) состояние с временнОй задержкой порядка 0.8 – 2,5 секунды, которая может регулироваться. То, что реле срабатывает с задержкой, можно определить по виду его контактов на схеме. Рассмотрим функцию реле РБ. На схеме видно, что реле РБ включается только при спуске. И только через цепочку из контактов. Разберём его работу в первом и втором режиме подъёма. Когда крановщик нажимает на ножную педаль, срабатывает сначала 1Т, через два последовательных контакта 1Т (смотри 9 шайбу контроллера) включатся 2В и 1В, через контакты 1В (6 шайба) включится Т, растормаживающий магнит отожмёт тормозные колодки, и, наконец, через цепочку Т, 1В, 2В (8 шайба) сработает РБ. Когда же крановщик отпустит педаль, растормаживающий магнит выключится сразу же, а контакторы 1В и 2В (9 шайба) выключатся позже, когда разомкнутся контакты РБ. Поскольку в этих режимах двигатель работает на торможение опускающегося груза, он гасит его инерцию. У груза получается меньший тормозной путь. Тормозные колодки изнашиваются не так сильно.

Теперь рассмотрим переход из третьего режима (работы двигателя на двух фазах) во второй режим. При этом переходе также магнит (посредством контакторов Т и 1Т) выключится сразу же, а двигатель посредством контакторов 1В и 2В кратковременно включится на три фазы в режим торможения противовключением, пока не разомкнутся контакты РБ.

Теперь рассмотрим цепь шайбы 6. Там тоже имеется контакт реле РБ. В чём его функция? Он подаёт питание на катушку контактора Т, включающего магнит, в режимах спуска, в которых не работает контактор 1В (а именно в третьем и четвёртом режиме спуска). РБ же в этих режимах включается, когда все небходимые для работы двигателя в данном режиме контакторы (2Н и 2В в третьем режиме, 1Н и 2Н в четвёртом режиме) включились.

Виды бруса

По форме изделие можно разделить на 2 типа: обычный и профилированный. Обычный – это простой брус прямоугольной формы, на профилированном же есть специальные вырезы и пазы, обеспечивающие простоту сборки конструкций и дополнительную теплоизоляцию помещения. По структуре изделия делятся на цельные и клееные. Цельный брус состоит из цельного массива дерева, а клееный – из нескольких элементов, склеенных между собой.

При изготовлении клееного изделия применяются предварительно отобранные ламели определенных параметров. Ламели изготавливают по специальной технологии из древесины, с исключением всех изъянов. После проведения определенных манипуляций ламели склеивают двухсоставным древесным клеем при определенных условиях. Все эти манипуляции позволяют получить изделия максимально точных размеров и с определенными характеристиками.

Как правило, укладка венцов из бруса – дело непростое. Но при желании, необходимых знаниях и достаточных ресурсах можно все сделать и своими руками. Для начала необходимо определиться с размерами дома и размещением комнат, нарисовать план и рассчитать все затраты. При строительстве сруба возможны варианты: «с остатком» и «без остатка». Необходимо сразу определиться с подходящим вариантом и выбрать тип материала: профилированный или обычный.

В первую очередь нужно возвести фундамент дома согласно предварительному плану. Укладка бруса для дома начинается с первого венца. Укладка бруса на фундамент начинается с покрытия места соприкосновения материалом, который обеспечит должную гидроизоляцию. Первый венец наиболее сильно подвержен влиянию губительных факторов, поэтому специалисты советуют подбирать изделие для него из наиболее твердого материала (желательно дуб или лиственница). Для надежности и дополнительной устойчивости необходимо закрепить первый венец на фундаменте.

Способы крепления венца на фундаменте:

  • Предварительно вставить в фундамент арматуру и на нее надевать брус, как показано на фото;
  • После установки просверлить отверстия и закрепить венец анкером;
  • После установки в просверленные отверстия забить нагель.

Еще один острый вопрос – это выбор варианта укладки бруса в углы. Не будем вдаваться в изысканные и сложные методы. Рассмотрим самые распространенные и заслуживающие доверия.

Способы укладки бруса в углы с остатком:

  • «в полдерева»;
  • «в курдюк»;
  • «в охряп».

Укладка без остатка:

  • на коренном шипе;
  • на вставном шипе;
  • «в лапу».

Все способы укладки имеют свои достоинства и недостатки. Одни не всегда дают ожидаемый результат, но просты в сборке, другие дают отличные показатели, но смущает сложность исполнения. Подробнее рассмотреть все методы можно на видео.

Все элементы скрепляются между собой деревянными нагелями, которые вставляют в просверленные отверстия. Укладка профилированного бруса даст возможность добиться максимально точной и быстрой сборки конструкции.

Обзор популярных моделей

Einhell TC-US 400

Корпус защищен от коррозии специальным покрытием. Рабочий стол крепится под нужным для работы углом. Гриндер отличается продолжительным сроком службы, простотой управления и обслуживания.

Достоинства станка Einhell TC-US 400:

  • качественная сборка;
  • низкий уровень вибрации;
  • бесшумность;
  • возможность подключения пылесоса.

Недостаток у модели один: для замены абразивной шины требуется много времени.

Jet 10-20 PLUS 628900M

Консольная установка на шлифовочном барабане гриндера позволяет обрабатывать элементы до 0,5 м за два прохода. Возможна замена оснастки для выполнения работ по брашированию при декорировании поверхностей.

Преимущества станка:

  • простота управления;
  • надежность;
  • высокая производительность;
  • точность выполнения операций.

Недостатки:

  • необходимость в периодической поправке ленты;
  • высокая стоимость.

ЭНКОР Корвет-51

Гриндер ЭНКОР Корвет-51 отличается высоким качеством заточки ножей и иных режущих инструментов. Имеется возможность оперативной переустановки рабочего стола. Станок оснащен транспортирным уклоном.

Преимущества:

  • компактность;
  • доступная стоимость;
  • удобство работы.

Недостатки:

  • высокий уровень вибрации стола;
  • необходимость фиксации станины к жесткому основанию.

Правила работы с грузоподъемными машинами и механизмами

К работе по подъему грузов допускаются агрегаты, у которых есть зарегистрированный допуск к эксплуатации. Документ оформляется на основании комплекса проведенных испытаний. Оператор должен иметь соответствующую техническую подготовку, пройти инструктаж

Особое внимание уделяется грамотной фиксации подвешенной конструкции, подъёмного навесного механизма

При отсутствии постоянного крепления контроль положения во время перемещения выполняется напрямую стропальщиком, оператором, грузчиком. Для слаженной работы каждого из специалистов в условиях действующей стройки или производства часто используются заранее оговоренные сигнальные жесты.

В отдельных случаях возникает необходимость в дополнительной защите подвешенного товара от возможных повреждений, механических воздействий (особенно часто такие ситуации происходят при работе с веществами, которые представляют повышенную химическую, врыво-, пожароопасность). При автоматизации техники алгоритм движения зависит от параметров и свойств материала, особенностей технологического процесса.

Техника безопасности

Стандартные требования безопасности в работе с грузоподъёмными механизмами вне зависимости от их конструктивных особенностей и сферы использования – допуск лиц старше 18 лет в спецодежде, средствах индивидуальной защиты после прохождения обучения, инструктажа, сдачи экзаменов на наличие необходимых для выполнения поставленных задач навыков. Также необходимо выполнить следующие действия:

  • проверить исправность узлов агрегата, приспособлений для захвата;
  • убедиться в том, что уровень освещения достаточен для работы;
  • использовать для обвязки стропы, которые соответствуют по своим параметрам весу перемещаемых конструкций;
  • транспортировку мелких товаров выполнять в контейнере;
  • не оставлять подвешенными конструкции на время перерыва;
  • не допускать поднятия конструкций, которые примёрзли к земле, забетонированы, засыпаны землёй;
  • выдерживать при подъёме минимум 0,5 м до самой высокой точки стационарных конструкций по траектории движения;
  • не допускать перемещения над людьми.

https://youtube.com/watch?v=ajxYWhGmuHA

После окончания выполнения запланированных работ крюк поднимают, выключают рубильник. Грузозахваты убирают в место, предназначенное для хранения. При выявлении любых неисправностей, о них сообщают сменщику или мастеру цеха.

Виды полиспастов

Полиспасты делятся по нескольким признакам:

  1. По назначению. Бывают силовые, а бывают скоростные схемы. Силовые позволяют поднимать больше груза, но медленнее. Скоростные позволяют поднимать тяжесть быстрее, но «осилят» меньший вес.
  2. По количеству блоков. Самый простой вариант — 1 ролик. Но их может быть и 2, и 3, и 4, и больше. Чем больше их — тем больший вес получится поднять.
  3. По сложности схемы. Бывают простые схемы (когда ролики объединены последовательно 1 канатом) и сложные (когда используется 2 или больше отдельных полиспастов). Сложные системы более производительны, дают больше результата при меньшем количестве блоков. К примеру, если объединить 2 полиспаста (из 1 и из 2 блоков) — получится выигрыш в силе в 6 раз. Тогда как простая схема даст выигрыш в 6 раз только при использовании 6 роликов.

Что влияет на эффективность подъемника?

Выше упоминалась кратность (выигрыш в силе) очень приблизительная, округленная в большую сторону. На практике она меньше.

На эффективность подъемника (на то, какой точный выигрыш в силе он даст) влияют такие факторы:

  • количество блоков;
  • материал троса;
  • тип подшипников;
  • качество смазки всех осей;
  • диаметр и длина каната;
  • угол между канатом и средней плоскостью ролика.

Как крепится веревка к механизму?

Закрепить грузоподъемный механизм к тросу можно следующими способами:

  1. Узлами, связанными из репшнуров. Количество оборотов — 3-5.
  2. Зажимом общего назначения.

Блоки. КПД подвижного и не подвижного блоков

Блоки −− простые механические устройства, позволяющие регулировать силу. Любой блок представляет собой колесо с желобом по окружности, вращающееся вокруг своей оси. Если ось является неподвижной, то блок называется неподвижным. Если ось является подвижной, то блок называется подвижным. Желоб предназначен для каната, цепи, ремня и т. п.

Неподвижный блок.

  • Действие неподвижного блока аналогично действию рычага с равными плечами l1=l2=r. Приложенная сила F1 равна нагрузкеF2, и условие равновесия имеет вид:
  • F1 = F2.
  • Неподвижный блок применяют, когда нужно изменить направление силы, не меняя ее величину.
  • Подвижный блок.

Подвижный блок действует аналогично рычагу, плечи которого составляют: l2 = l1 /2 = r. При этом условие равновесия имеет вид:

где F1 — приложенная сила, F2 — нагрузка. Применение подвижного блока дает выигрыш в силе в два раза.

  1. Расчет колодочного тормоза с приводом от электрогидравлического толкателя.
  2. Расчетная схема колодочного тормоза ТКТ с пружинным замыканием
  3. Рис. 1
  4. Максимально допустимый установочный зазор между колодкой и шкивом:
  5. где hм — ход якоря электромагнита; k1 — коэффициент возможного использования хода якоря.
  6. Из условия равновесия верхнего рычага, соединяющего правый рычаг с замыкающей пружиной и со штоком толкателя, определяется необходимая сила сжатия пружины:

При размыкании тормоза сила толкателя Р преодолевает силу сжатия пружины Рп; при этом Рт = Рпc/e.

Необходимый ход штока толкателя hт определяется из уравнения:

  • На рисунке 2 размер hт — полный ход штока, указанный в паспорте, размер h — установочный рабочий ход штока.
  • Колодочный тормоз с электрогидравлическим приводом
  • Рис. 2
  • Значения минимальных радиальных установочных зазоров между колодкой и шкивом принимают по следующим рекомендациям:
  • Табл. 1

Жесткость рычажной системы необходимо проверять расчетом. Суммарная деформация рычажной системы независимо от вида привода не должна быть более 10% нормального хода штока.

Расчет тормозных рычагов на прочность ведется по изгибающему моменту М от силы Р в опасном сечении рычага:

где W — момент сопротивления изгибу рассчитываемого сечения рычага; kд — динамический коэффициент, учитывающий характер изменения приложенной силы при замыкании тормоза, и в зависимости от типа привода колодочного тормоза (см. остановы и тормоза) имеет следующие значения:

Грузовые барабаны ГПМ. Расчет габаритов барабана при многочисленной навивке каната.

Барабаны – это элементы грузоподъемных машин, служащие для наматывания гибкого органа и преобразования вращательного движения привода в поступательное движение груза. Барабаны разделяются на цепные и канатные для одинарных и сдвоенных полиспастов.

Канатные барабаны по форме внешней поверхности разделяют на цилиндрические, конические и коноидальные. Наибольшее распространение получили цилиндрические барабаны. Они бывают гладкие и нарезные.

Гладкие барабаны применяют для многослойной навивки каната при большой высоте подъема груза и необходимости уменьшения длины барабана по условиям компоновки.

Однако у канатов, наматываемых на гладкие барабаны, появляются большие контактные напряжения в местах касания и происходит сплющивание каната при намотке в несколько слоев, что значительно снижает срок их службы.

Барабаны изготавливают отливкой или сваркой.

Толщину стенки барабанапринимают по эмпирической зависимости: d = 0,02 D + (6 10) мм – для чугунных барабанов и d = 0,01 D + 3 мм – для стальных, где D – диаметр барабана по дну канавки, мм

РАСЧЕТ

При той же длине каната многослойная навивка позволяет применять барабаны меньшей длины, чем при однослойной навивке, однако условия работы каната в этом случае резко ухудшаются, уменьшается срок его службы, не обеспечивается равномерность хода груза; скорость перемещения груза получается различной при навивании первого и каждого из последующих слоев. Барабаны для многослойной навивки делают с гладкой поверхностью и бортами, предотвращающими сход каната. Высота бортов ho :

  1. h0=(m+2)dК
  2. где h0—высота бортов барабана; —диаметр каната;
  3. При заданной канатоемкости , диаметре каната , диаметре барабана , шаге навивки, равном , числе навиваемых слоев m, Длина барабана с гладкой поверхностью :
  • LБ=LКdК/πm(mdК+DБ)
  • Канатоёмкость барабана зависит от длины и диаметра барабана и , количества слоёв навивки каната на барабане m и диаметр каната , которые выбираются из паспорта. Канатоёмкостьопределяют, м
  • LК=(πzm( DБ dК)-2π DБ )/1000
  • где z — число витков каната на рабочей длине барабана, z = /t ; t — шаг навивки каната, t =d .



Расчет полиспаста

Перед изготовлением полиспаста требуется рассчитать основные технические характеристики грузоподъемной конструкции. Расчеты требуется для составления чертежей и производятся согласно параметрам рабочего помещениями и весом груза.

Для определения нагрузок, влияющих на блочную систему в ходе эксплуатации, нужно рассчитать параметры, действующие на отдельные блоки:

  1. Силу воздействия поднимаемого груза (SC).
  2. Тяговую силу двигателя (SM).
  3. Угол отклонения (α). При расчете параметров полиспаста этой характеристикой можно пренебречь, потому что у современных устройств угол отклонения отсутствует.
  4. Диаметр блока (D).
  5. Диаметр втулки (d).

Уравнение, использующееся для нахождения моментов силы, имеет следующий вид: SM * R = SC*R + l*SC*R + N* g*d/2, где:

  1. SM * R – момент силы, с которой груз оказывает влияние на блочную систему.
  2. l – коэффициент, характеризующий жесткость ручного веревочного каната при огибании ролика. Он зависит от структуры витков троса и определяется экспериментальным методом.
  3. Нагрузка на ось шкива. Она определяется по формуле: 2*SC*R.
  4. g – коэффициент, характеризующий силу трения втулки шкивов.
  1. 97% — используется в качестве среднего значения, если в элементах грузоподъемного устройства присутствуют подшипники качения и втулки из бронзы.
  2. 95% — используются подшипники скольжения.
  3. 93% и ниже – при работе грузоподъемного механизма в суровых природных условиях или в помещениях с высокой температурой.

При расчете также рекомендуется определить КПД остальных обводных роликов, в зависимости от конструктивных особенностей грузоподъемного механизма.

Наклонная плоскость.

Как мы знаем, тяжёлую бочку проще вкатить по наклонным мосткам, чем поднимать вертикально. Мостки, таким образом, являются механизмом, который даёт выигрыш в силе.

В механике подобный механизм называется наклонной плоскостью. Наклонная плоскость — это ровная плоская поверхность, расположенная под некоторым углом к горизонту. В таком случае коротко говорят: «наклонная плоскость с углом «.

Найдём силу, которую надо приложить к грузу массы , чтобы равномерно поднять его по гладкой наклонной плоскости с углом . Эта сила , разумеется, направлена вдоль наклонной плоскости (рис. 5).

Выберем ось так, как показано на рисунке. Поскольку груз движется без ускорения, действующие на него силы уравновешены:

Проектируем на ось :

,

откуда

Именно такую силу нужно приложить, что двигать груз вверх по наклонной плоскости.

Чтобы равномерно поднимать тот же груз по вертикали, к нему нужно приложить силу, равную . Видно, что , поскольку . Наклонная плоскость действительно даёт выигрыш в силе, и тем больший, чем меньше угол .

Широко применяемыми разновидностями наклонной плоскости являются клин и винт.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий