Ледебурит

Чугуны

Сплавы на диаграмме железо-углерод, которые содержат углерода более, чем 2,14 %, называются чугунами. Они обладают высокой хрупкостью. Поперечное сечение такого чугуна имеет светлый тон, а потому его называют белым чугуном.

На диаграмме это точка С, называемая эвтектикой, с соответствующим содержанием углерода 4,3 %. При кристаллизации образуется смесь, состоящая из аустенита и цементита, в совокупности называемая ледебуритом. Фазовый состав постоянен.

При концентрации углерода менее 4,3 % (доэвтектический чугун) при кристаллизации выделяется аустенит из раствора. Далее из него выделяется Ц2. А при 727° С аустенит превращается в перлит. Структурное состояние такого чугуна следующее: крупные участки перлита темного тона.

В заэвтектическом белом чугуне (углерода более 4,3%) при охлаждении структурирование происходит с образованием кристаллов Ц1. Далее превращения осуществляются уже в твердом состоянии. Структура представляет собой ледебурит, который является фоном для полей перлита темного тона. А крупные пласты – это Ц1.

Свободный цементит

Свободный цементит ( Fe3C), который образуется при недостаточном количестве кремния, слишком большом содержаний марганца и серы.

Структурно свободный цементит нежелателен.

Структурно свободный цементит, X 500: а – до деформации, 6 – после деформации.

Разложение структурно свободного цементита достигается при нагреве и выдержке отливки выше критического интервала; температура нагрева и длительность выдержки зависят от состава белого чугуна по содержанию углерода ( фиг.

Количество структурно свободного цементита. Включения структурно свободного цементита, расположенные по границам зерен феррита ( фиг. Скоагулированные и расположенные внутри зерен феррита включения структурно свободного цементита менее опасны. Шкала построена по возрастанию размеров включений цементита и по развитию распределения его в виде сетки или цепочки.

Разложение структурно свободного цементита достигается при нагреве и выдержке отливки выше критического интервала; температура нагрева и длительность выдержки зависят от состава белого чугуна по содержанию углерода ( фиг.

Частицы структурно свободного цементита должны быть мелкими, по возможности равномерно рассеянными ( фиг. Мелкие частички цементита получаются при пониженных температурах смотки горячекатаной полосы в рулон, а крупные – при высоких, когда они успевают не – только выделиться из твердого раствора в феррите, но и достигнуть крупных размеров вследствие коагуляции и роста.

Количество структурно свободного цементита в стали определяется баллами по эталонным образцам микроструктур.

Кроме структурно свободного цементита, на границах ферритных зерен имеется еще третичный цементит. Помешать его выделению при конечной термической обработке нельзя, так как для этого листы для глубокой вытяжки нужно охлаждать медленно.

Не допускается структурно свободный цементит. Эвтектический графит и феррит допускаются в виде отдельных мелких включений в количестве не более 5 % площади шлифа для каждого включения. Излом отливки должен иметь однородное мелкозернистое строение с матовым оттенком.

SE) имеющийся в ней свободный цементит до конца растворится в аустените и структура станет однородной.

В доэвтектоидных сталях нет структурно свободного цементита.

В) Чугуны со структурно свободным цементитом относятся к белым чугунам. Феррит в них может появиться в результате отжига, но такой чугун не относится к ферритным.

В низкоуглеродистой стали не допускается структурно свободный цементит. Он образуется в результате замедленного охлаждения после прокатки или термической обработки и, располагаясь по границам зерен, резко снижает пластические свойства. Это вызывает большой брак при холодной высадке.

Фазы в системе «железо-углерод»

Компоненты, фазы, линии и точки диаграммы fe-fe3c

В системе железо – углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит, графит.

Жидкая фаза

Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.

Феррит

Феррит (Ф, α)- твердый раствор внедрения углерода в α-железе (от латинского слова ferrum – железо). Различают низкотемпературный феррит с предельной растворимостью углерода 0,02 % при температуре 727° С (точка P) и высокотемпературный δ-феррит (в интервале температур 1392…1539° С) с предельной растворимостью углерода 0,1 % при температуре 1499° С (точка J).

Свойства феррита близки к свойствам железа. Он мягок (твердость – 80 — 130 НВ, временное сопротивление – σв=300 МПа) и пластичен (относительное удлинение — δ=50 %), магнитен до 768° С.

Под микроскопом феррит выглядит как светлые полиэдрические зерна. В сталях может существовать в виде сетки (разной толщины, в зависимости от содержания углерода), зерен (малоуглеродистые стали), пластин или игл (видманштетт).

Аустенит в сталях

Аустенит (А, γ) – твердый раствор внедрения углерода в γ–железо (по имени английского ученого Р. Аустена). Углерод занимает место в центре гранецентрированной кубической ячейки. Предельная растворимость углерода в γ -железе 2,14 % при температуре 1147° С (точка Е). Аустенит имеет твердость 180 НВ, пластичен (относительное удлинение – δ=40…50 %), парамагнитен. При растворении в аустените других элементов могут изменяться свойства и температурные границы существования. Под микроскопом выглядит как светлые полиэдрические зерна с двойниками.

Цементит – формы существования

В железоуглеродистых сплавах присутствуют фазы: цементит первичный, цементит вторичный, цементит третичный. Химические и физические свойства этих фаз одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений. Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении – вокруг зерен перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.

Поскольку углерод в сплавах с железом встречается в виде цементита и графита, существуют две диаграммы состояния, описывающие условия равновесия фаз в системах железо — цементит и железо — графит. Первая диаграмма (Fе — Fе3С) называется цементитной (метастабильная), вторая (Fе — С) — графитной (стабильная). Оба варианта диаграммы приводятся вместе в одной системе координат: температура — содержание углерода. Диаграмма состояния системы железо — углерод построена по результатам многочисленных исследований, проведенных учеными ряда стран. Особое место среди них занимают работы Д.К. Чернова

Он открыл существование критических точек в стали, определил их зависимость от содержания углерода, заложил основы для построения диаграммы состояния железоуглеродистых сплавов в ее нижней, наиболее важной части

Буквенное обозначение узловых точек в диаграмме является общепринятым как в России, так и за рубежом.

Диаграмма состояния железо-углерод

Имеющиеся во всех областях диаграммы фазы видны на рисунке. Значение всех линий указано в таблице.

Ликвидус по всей диаграмме проходит по линиям АВ, ВС, СD; солидус — по линиям АН, НJ, JЕ, ЕСF. Сплавы железа с углеродом обычно делят на стали и чугуны. Условной границей для такого деления является 2,14 % С (точка E). Сплавы, содержащие углерода менее 2,14 %, относятся к сталям, более 2,14 % — к чугунам.

Температуры, при которых происходят фазовые и структурные превращения в сплавах системы железо – цементит, т.е. критические точки, имеют условные обозначения. Обозначаются буквой А. В зависимости от того, при нагреве или при охлаждении определяется критическая точка, к букве А добавляется индекс с (от слова chauffage – нагрев) при нагреве и индекс r (от слова refroidissement – охлаждение) при охлаждении с оставлением цифры, характеризующей данное превращение.

Таким образом, например, нагрев доэвтектоидной стали выше соответствующей точки на линии GS обозначается как нагрев выше точки АС3. При охлаждении же этой стали первое превращение должно быть обозначено как Аr3, второе (на линии РSК) — как Аr1.

Отрывок, характеризующий Ледебурит

Исчезнувшая во время разговора глупая улыбка опять явилась на лице военного министра.

– До свидания, очень благодарю вас. Государь император, вероятно, пожелает вас видеть, – повторил он и наклонил голову.

Когда князь Андрей вышел из дворца, он почувствовал, что весь интерес и счастие, доставленные ему победой, оставлены им теперь и переданы в равнодушные руки военного министра и учтивого адъютанта. Весь склад мыслей его мгновенно изменился: сражение представилось ему давнишним, далеким воспоминанием.

Князь Андрей остановился в Брюнне у своего знакомого, русского дипломата .Билибина.

– А, милый князь, нет приятнее гостя, – сказал Билибин, выходя навстречу князю Андрею. – Франц, в мою спальню вещи князя! – обратился он к слуге, провожавшему Болконского. – Что, вестником победы? Прекрасно. А я сижу больной, как видите.

Князь Андрей, умывшись и одевшись, вышел в роскошный кабинет дипломата и сел за приготовленный обед. Билибин покойно уселся у камина.

Князь Андрей не только после своего путешествия, но и после всего похода, во время которого он был лишен всех удобств чистоты и изящества жизни, испытывал приятное чувство отдыха среди тех роскошных условий жизни, к которым он привык с детства. Кроме того ему было приятно после австрийского приема поговорить хоть не по русски (они говорили по французски), но с русским человеком, который, он предполагал, разделял общее русское отвращение (теперь особенно живо испытываемое) к австрийцам.

Билибин был человек лет тридцати пяти, холостой, одного общества с князем Андреем. Они были знакомы еще в Петербурге, но еще ближе познакомились в последний приезд князя Андрея в Вену вместе с Кутузовым. Как князь Андрей был молодой человек, обещающий пойти далеко на военном поприще, так, и еще более, обещал Билибин на дипломатическом. Он был еще молодой человек, но уже немолодой дипломат, так как он начал служить с шестнадцати лет, был в Париже, в Копенгагене и теперь в Вене занимал довольно значительное место. И канцлер и наш посланник в Вене знали его и дорожили им. Он был не из того большого количества дипломатов, которые обязаны иметь только отрицательные достоинства, не делать известных вещей и говорить по французски для того, чтобы быть очень хорошими дипломатами; он был один из тех дипломатов, которые любят и умеют работать, и, несмотря на свою лень, он иногда проводил ночи за письменным столом. Он работал одинаково хорошо, в чем бы ни состояла сущность работы. Его интересовал не вопрос «зачем?», а вопрос «как?». В чем состояло дипломатическое дело, ему было всё равно; но составить искусно, метко и изящно циркуляр, меморандум или донесение – в этом он находил большое удовольствие. Заслуги Билибина ценились, кроме письменных работ, еще и по его искусству обращаться и говорить в высших сферах.

Билибин любил разговор так же, как он любил работу, только тогда, когда разговор мог быть изящно остроумен. В обществе он постоянно выжидал случая сказать что нибудь замечательное и вступал в разговор не иначе, как при этих условиях. Разговор Билибина постоянно пересыпался оригинально остроумными, законченными фразами, имеющими общий интерес.

Эти фразы изготовлялись во внутренней лаборатории Билибина, как будто нарочно, портативного свойства, для того, чтобы ничтожные светские люди удобно могли запоминать их и переносить из гостиных в гостиные. И действительно, les mots de Bilibine se colportaient dans les salons de Vienne, и часто имели влияние на так называемые важные дела.

Худое, истощенное, желтоватое лицо его было всё покрыто крупными морщинами, которые всегда казались так чистоплотно и старательно промыты, как кончики пальцев после бани. Движения этих морщин составляли главную игру его физиономии. То у него морщился лоб широкими складками, брови поднимались кверху, то брови спускались книзу, и у щек образовывались крупные морщины. Глубоко поставленные, небольшие глаза всегда смотрели прямо и весело.

– Ну, теперь расскажите нам ваши подвиги, – сказал он.

Болконский самым скромным образом, ни разу не упоминая о себе, рассказал дело и прием военного министра.

– Ils m’ont recu avec ma nouvelle, comme un chien dans un jeu de quilles, – заключил он.

Недостатки

Перлит часто используется в сочетании с вермикулитом. Преимущества перлита для вермикулита: капиллярное распределение влаги облегчает полив растений и быстрее высыхает между поливами.

Преимущества вермикулита перед перлитом: меньшая усадка при шлифовании(меньшее слеживание), отсутствие пустот при заполнении, небольшие полирующие свойства (не вызывает механических повреждений корней), низкая гигроскопичность, ионообменная способность.

Основное количество добываемого перлита используется в производстве вспученного перлита, который используется в различных отраслях промышленности и сельского хозяйства.

Благодаря таким свойствам, как негорючесть, низкая теплопроводность и малый удельный вес, вспучивающийся перлит широко применяется в производстве звукоизоляционных материалов и изоляционных материалов в строительстве.

В зависимости от марки из вспученного перлитового песка получают легкие бетоны и растворы различного назначения, керамические и битумные перлитные изделия, перлитные изделия на основе синтетических связующих, гипсовые и силикатные перлитовые материалы, штукатурные растворы и широкий спектр изоляционных материалов.

  • Вспученный перлит также используется для изоляции тепловых агрегатов криогенного оборудования, металлургии и других отраслей промышленности.
  • Особенно мелкая фракция расширенного перлита (фильтрующий перлит) используется для фильтрации суспензий в различных отраслях промышленности, таких как пищевая, нефтехимическая, химическая, медицинская и др.

Процесс расширения происходит за счет присутствия 2-6% объединенной воды в природном перлите.

Реферат на темуНа заказ Образец и пример
Перлит структурная составляющая железоуглеродистых сплавов В настоящее время в России только 20% производимого вспученного перлита используется для строительства. Перлит практически не используется для теплоизоляции стен, крыш и потолков.

Когда этот камень быстро нагревается до более чем 870°C, он лопается, как «попкорн», поскольку связанная вода испаряется, создавая бесчисленные крошечные пузырьки в размягченном стекле particles. It это такие маленькие стекловидные пузырьки, которые обеспечивают такой удивительный легкий вес и другие превосходные физические свойства, как надутый перлит.

Ледебурит структурная составляющая железоуглеродистых сплавов. Аустенит твердый раствор внедрения углерода и других элементов в γ-железе.
Композиционные материалы, армированные химическими волокнами. Цементит структурная составляющая железоуглеродистых сплавов.

1.doc

Диаграмма состояния железо – углерод. Структура и свойства углеродистых сталей и чугунов

  1. Изучить диаграмму состояния железо-углерод.
  2. Изучить микроструктуры углеродистых сталей в равновесном (отожженном) состоянии. Установить зависимость между структурами и механическими свойствами углеродистых сталей.
  3. Изучить микроструктуры белых, серых, высокопрочных и ковких чугунов. Установить зависимость между составом, условиями получения, структурами и механическими свойствами чугунов.

^ 2. СОДЕРЖАНИЕ РАБОТЫ

  1. Ознакомиться с построением кривых охлаждения отдельных сплавов системы железо-углерод.
  2. Ознакомиться с зависимостью механических свойств углеродистых сталей от содержания углерода.
  3. Изучить и зарисовать микроструктуры углеродистых сталей и чугунов. Обозначить названия структурных составляющих.
  4. Оформить отчет к лабораторной работе.

^ 3. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ. 3γ3железо – углерод αоδ %. bоо. Fe3CНВ железо-цементитжелезо-графитДиаграмма состояния железо-цементитАВСВDAHJECFESPQДиаграмма железо-цементит (Fe – Fe3C)HJB,ECFРSК HJBLBнAJ.еECFLCАEЕо^ PSK ФРFeFe3CLАВСDANHGPQJESGN.AHBδ NHJδ JECBCDFSECFKGSPα QPSKLα железо-цементита, GSPа//BСJEGS ФРPQФ + П +ЦIIIBСJE2 ESES% SKIIIIIJEBСLCАE+Ц.Лвид (П+Ц)Л (А+Ц)/видIIDCES . ФР/РQвидIII

    1. Влияние углерода и постоянных примесей на свойства сталей.
Сплав 1 (доэвтектоидная сталь) Сплав 2 (заэвтектоидная сталь)
Рис.3.3 Рис.3.4.
Сплав 3 (доэвтектический чугун) Сплав 4 (заэвтектический чугун)
Рис.3.6 Рис.3.7

bг – ^ По химическому составуПо качеству%Р.^ По степени раскисления и характеру затвердевания^ При классификация по структурематрицFeFe3C

а б
а – доэвтектический, б – эвтектический белый чугун

% % %b% . %,

  1. Диаграмму состояния FeC(в масштабе).
  2. Кривые охлаждения сплавов (содержание углерода задает преподаватель) согласно диаграммы FeC.
  3. График зависимости механических свойств стали от содержания углерода.
  1. Общая характеристика диаграммы FeC..
  2. Назовите области диаграммы (однофазные и двухфазные).
  3. Назовите фазы в диаграмме и охарактеризуйте каждую из них.
  4. В каких состояниях может находиться углерод в железоуглеродистых сплавах ?
  5. Объясните, как определяется состав и количество фаз в диаграмме.
  6. Расскажите о классификации сталей.
  7. Влияние углерода на механические свойства сталей.
  8. Структура, свойства, маркировка и применение конструкционных углеродистых: сталей.

,

  1. Высокопрочный чугун (структура, механические свойства, маркировка, получение и применение).
  2. Ковкий чугун (структура, механические свойства, маркировка, получение и применение).

^ СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

  1. Лахтин Ю.М., Леонтьева Б.П. Материаловедение. – М.: Машиностроение, 1990. – 493 с.
  2. Основы материаловедения. Под ред. И.И.Сидорина. – М.: Машиностроение, 1976.
  3. Геллер Ю.А., Рахштадт А.Г. Материаловедение. – М.: Металлургия, 1983.
  4. Лахтин Ю.М. Металловедение и термическая обработка металлов. – М.: Металлургия, 1984. 359 с.
  5. Руководство к лабораторным работам по материаловедению. Под ред. И,И.Сидорина. – М.: Высшая школа, 1967.

Поиск по сайту:  

Фазы в системе «железо-углерод»

В системе железо – углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит, графит.

Жидкая фаза

Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.

Феррит

Феррит (Ф, α)- твердый раствор внедрения углерода в α-железе (от латинского слова ferrum – железо). Различают низкотемпературный феррит с предельной растворимостью углерода 0,02 % при температуре 727° С (точка P) и высокотемпературный δ-феррит (в интервале температур 1392…1539° С) с предельной растворимостью углерода 0,1 % при температуре 1499° С (точка J).

Свойства феррита близки к свойствам железа. Он мягок (твердость – 80 — 130 НВ, временное сопротивление – σв=300 МПа) и пластичен (относительное удлинение — δ=50 %), магнитен до 768° С.

Под микроскопом феррит выглядит как светлые полиэдрические зерна. В сталях может существовать в виде сетки (разной толщины, в зависимости от содержания углерода), зерен (малоуглеродистые стали), пластин или игл (видманштетт).

Аустенит в сталях

Аустенит (А, γ) – твердый раствор внедрения углерода в γ–железо (по имени английского ученого  Р. Аустена). Углерод занимает место в центре гранецентрированной кубической ячейки. Предельная растворимость углерода в γ -железе 2,14 % при температуре 1147° С (точка Е). Аустенит имеет твердость 180 НВ, пластичен (относительное удлинение – δ=40…50 %), парамагнитен. При растворении в аустените других элементов могут изменяться свойства и температурные границы существования. Под микроскопом выглядит как светлые полиэдрические зерна с двойниками.

Цементит – формы существования

В железоуглеродистых сплавах присутствуют фазы: цементит первичный, цементит вторичный, цементит третичный. Химические и физические свойства этих фаз одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений. Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении – вокруг зерен перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.

Поскольку углерод в сплавах с железом встречается в виде цементита и графита, существуют две диаграммы состояния, описывающие условия равновесия фаз в системах железо — цементит и железо — графит. Первая диаграмма (Fе — Fе3С) называется цементитной (метастабильная), вторая (Fе — С) — графитной (стабильная). Оба варианта диаграммы приводятся вместе в одной системе координат: температура — содержание углерода. Диаграмма состояния системы железо — углерод построена по результатам многочисленных исследований, проведенных учеными ряда стран. Особое место среди них занимают работы Д.К. Чернова

Он открыл существование критических точек в стали, определил их зависимость от содержания углерода, заложил основы для построения диаграммы состояния железоуглеродистых сплавов в ее нижней, наиболее важной части

Буквенное обозначение узловых точек в диаграмме является общепринятым как в России, так и за рубежом.

Диаграмма состояния железо-углерод

Имеющиеся во всех областях диаграммы фазы видны на рисунке. Значение всех линий указано в таблице.

Ликвидус по всей диаграмме проходит по линиям АВ, ВС, СD; солидус — по линиям АН, НJ, JЕ, ЕСF. Сплавы железа с углеродом обычно делят на стали и чугуны. Условной границей для такого деления является 2,14 % С (точка E). Сплавы, содержащие углерода менее 2,14 %, относятся к сталям, более 2,14 % — к чугунам.

Температуры, при которых происходят фазовые и структурные превращения в сплавах системы железо – цементит, т.е. критические точки, имеют условные обозначения. Обозначаются буквой А. В зависимости от того, при нагреве или при охлаждении определяется критическая точка, к букве А добавляется индекс с (от слова chauffage – нагрев) при нагреве и индекс r (от слова refroidissement – охлаждение) при охлаждении с оставлением цифры, характеризующей данное превращение.

Таким образом, например, нагрев доэвтектоидной стали выше соответствующей точки на линии GS обозначается как нагрев выше точки АС3. При охлаждении же этой стали первое превращение должно быть обозначено как Аr3, второе (на линии РSК) — как Аr1.

Структурная составляющая железоуглеродистых сплавов

Вторичный цементит, выделяющийся по границам зерен аустенита, сплавляется с красным Бритовым цементитом, поэтому он практически невидим под микроскопом.

Небольшое переохлаждение менее 727°С приводит к превращению аустенита в перлит в результате эвтектоидной реакции. Поэтому в Белом чугуне перед эвтектикой, при комнатной температуре, наряду с перлитом и вторичным цементитом, присутствует красный Брит в качестве структурного компонента.

Когда жидкая фаза состава эвтектической точки охлаждается до температуры 1147°с, начинается кристаллизация смеси аустенита и цементита- Ледебурит .

Применение перлита

Белый цвет перлита затрудняет диагностику почвенных вредителей (корнеядных насекомых, мучнистых червецов, личинок грибов). РН перлита нейтральный. Когда растение выращивают в чистом перлите и орошают жесткой водой, рН субстрата может смещаться в щелочную сторону, что тормозит рост растения и препятствует использованию питательных веществ.

Поскольку он имеет положительный заряд, он не может удерживать положительный ион удобрения и не участвует в процессе ионного обмена.

Вермикулит, кирпичная крошка, мелкий керамзит, полистирольная крошка, песок (последние 2 компонента придают субстрату пористость и рыхлость, но не удерживают воду).

Поделитесь в социальных сетях:FacebookX
Напишите комментарий