Молоток Кашкарова. Методика проведения испытания

Определение влажности материалов

Влагомер
МГ-4 предназначен для оперативного производственного контроля влажности
строительных материалов и изделий, пилопродукции и деревянных деталей по ГОСТ
21718 и ГОСТ 16588.

Влагомер
может быть использован для измерения влажности широкой номенклатуры твёрдых и
сыпучих материалов при их дополнительной градуировке, разработке и аттестации
методики выполнения измерений. Принцип работы влагомера основан на
диэлькометрическом методе измерения влажности, а именно на корреляционной
зависимости диэлектрической проницаемости материала от содержания в нем влаги
при положительных температурах.

При
взаимодействии с измеряемым материалом емкостный преобразователь вырабатывает
сигнал пропорциональный диэлектрической проницаемости, который регистрируется
измерительным блоком и преобразуется в значение влажности. Результаты измерений
выводятся на экран дисплея влагомера.

Из чего состоит склерометр?

Термин «склерометр» означает «измеритель твердости». Конструктивно прибор состоит из 22 элементов. Кроме индентора (ударный плужнер) и корпуса прибор включает в себя:

  • конус корпуса;
  • направляющие стержни с ползунком;
  • кнопку, исполняющая функцию штопора;
  • боек с заданной массой;
  • направляющие движения индентора шток бойка;
  • шайбу для фиксации бойка;
  • колпачок;
  • заднюю крышку склерометра;
  • войлочное кольцо.

Некоторые модели доукомплектовывают предохранителем и контрольной гайкой, а также 4 пружинами (сжимающая, ударяющая, предохраняющая, фиксирующая). Обязательно присутствуют сцепляющий винт, штифт, шкала Шмидта, дисплей.

Неразрушающие методы испытаний – Оценка прочности бетона с помощью молотка КМ.Кашкарова

Содержание материала

  • Неразрушающие методы испытаний

  • Методы проникающих сред

  • Механические методы испытаний

  • Оценка прочности металла

  • Оценка прочности бетона

  • Оценка прочности бетона с помощью молотка КМ.Кашкарова

  • Оценка прочности древесины

  • Акустические методы

  • Способы прозвучивания

  • Способы прозвучивания

  • Область применения ультразвуковых методов

  • Определение глубины трещин в бетоне

  • Определение глубины поверхностной трещины в бетоне

  • Импульсные звуковые методы

  • Испытание образцов бетона резонансным методом

  • Все страницы

Страница 6 из 15

Эталонный молоток К.П. Кашкарова схематически показан на рис. 3. Принцип его действия аналогичен рассмотренному выше прибору Польди с той разницей, что удар наносится взмахом самого эталонного молотка.

Рис. 3. Схема молотка К. П. Кашкарова:

1 – головка; 2 – рукоятка; 3 – эталонный стержень; 4 – стальной шарик; 5 – стакан; 6 – торец стержня 3; 7 – испытуемый материал; 8 – пружина

При ударе боек (стальной шарик диаметром S мм) оставляет на поверхности исследуемого бетона вмятину диаметром dб, а на эталонном стержне (круглого сечения из Ст. 3 диаметром 10 мм) – отпечаток диамет­ром dэт. Для десяти ударов, нанесенных по проверяемому элементу с уда ленными штукатурными и окрасочными слоями, определяется усредненное отношение dб/dэт; прочность бетона оценивается по корреляционной зави­симости между dб/dэт и пределом прочности бетона на сжатие, устанавли­ваемой экспериментально. При этом должны учитываться конкретные ус­ловия изготовления конструкции и твердения бетона, сроки испытаний, ше­роховатость, влажность и другие особенности состояния поверхности кон­струкции. Для эксплуатируемых сооружений указанная зависимость долж­ка быть уточнена на образцах, выбуренных из соответствующих элементов.

Эталонный молоток рекомендуется для разных операций: оценок отпускной прочности бетонных изделий на заводах железобетонных конст­рукций, прочности бетона при передаче напряжения от арматуры на бетон в предварительно напряженных железобетонных конструкциях, коэффици­ента изменчивости прочности бетона в изделиях и конструкциях (что осо­бенно существенно при освидетельствованиях сооружений) и т. д.

Одним из наиболее простых приспособлений для сравнительной оценки прочности бетона является молоток И. Л. Физделя. Ударная часть этого стального молотка весом 250 гзаканчивается шариком из твердой стали, легко вращающимся в гнезде. По диаметру отпечатков, полученных при ударе, определяют прочность бетона по эмпирическому графику. Ре­зультаты, несмотря на их ориентировочность, все же полезны в производственных условиях. Пользование молотком при некотором навыке не вы­зывает затруднений.

Оценка прочности бетона склерометром. Приборы этого типа применяются главным образом за рубежом. Из их числа наиболее известен прибор Шмидта (Швейцария).

В этих приборах, так же как вударнике Шора для металла, о ха­рактеристиках материала судят по величине отскока стального бойка. От­скок фиксируется указателем на шкале. Удар наносится не непосредствен­но по исследуемой поверхности бетона, а воспринимается наконечником прибора, прижатого к конструкции. Этот промежуточный стальной элемент необходим, поскольку величина отскока при резкой разнице модулей упру­гости соударяемых материалов становится трудносопоставимой. Удар осуществляется спуском пружины, а не свободным падением бойка, как у Шора, что позволяет испытывать любым образом ориентированные по­верхности. Прибор удобен в работе и дает довольно четкие результаты.

Какие существуют методы испытаний

В обследовании уже построенных зданий и в производстве стройматериалов применяются разные методы определения прочности бетона. Все они разделяются на функциональные группы: разрушающие и неразрушающие. Последние выполняются прямым и косвенным способами.

С помощью данных методик осуществляется контроль и получается оценка прочностных показателей бетона в уже возведенных и эксплуатируемых зданиях, на стройплощадках и в лабораторных условиях.

Разрушающие методы

Испытания разрушающим методом подразумевают вырубку или выпиливание образцов из готовой бетонной конструкции, которые впоследствии разрушаются на специальном прессе. Цифровые величины сжимающих усилий фиксируются после каждого испытательного мероприятия.

Такой способ позволяет получить достоверную информацию о характеристиках материала, но из-за высокой трудоемкости, дороговизны и образования на сооружениях локальных разрушений используется только в крайних случаях.

В условиях производства проверки выполняют на специально заготовленных сериях образцов, отобранных из рабочей смеси с полным соблюдением технических регламентов и стандартов. Образцы цилиндрической или кубовидной форм выдерживаются в максимально приближенной к заводским условиям среде, после чего проходят тестирование на прессе.

Неразрушающие прямые

Контрольные проверочные тесты прямым неразрушающим методом контроля осуществляются без нанесения повреждений обследуемым объектам. Для механического воздействия на исследуемую плоскость применяются специальные приборы для определения прочности бетона, с помощью которых взаимодействие производится:

  • способом отрыва. Составом на основе эпоксидов к монолитной поверхности приклеивается диск из высокопрочной стали. Далее с применением специальных механизмов диск вместе с бетонным фрагментом отрывается. Посредством математических расчетов условная величина усилия переводится в определяемый показатель;
  • методом отрыва со скалыванием. В данном случае прибор не к диску крепится, а непосредственно в полость бетонного объекта. В просверленные отверстия помещаются анкеры лепесткового типа, после чего элемент материала нужного размера извлекается. При этом устанавливается разрушающее усилие;
  • способом скалывания ребра. Применяется к таким конструкциям с наличием в них колонн, перекрытий и балок. К выступающему участку крепится прибор, нагрузка плавно увеличивается. Глубину и усилие скола устанавливают в момент разрушения, затем искомая прочность рассчитывается по формуле.

Механические методы определения прочности бетона не применяются, когда менее 20 мм составляет толщина защитного слоя. Особо относится это к технике скалывания.

Неразрушающие косвенные

При таких испытаниях прочность устанавливается без введения в тело конструкции тестирующих устройств. В данном случае применяют следующие способы:

  • исследование ультразвуком. Прибор устанавливается на ровную неповрежденную поверхность, по предварительно составленной программе прозванивают один за другим каждый участок. Ультразвуковым способом прочностные показатели получаются путем сравнивания скорости прохождения волн в эталонном образце и готовой конструкции;
  • метод ударного импульса. Здесь молотком Шмидта ударяют по поверхности бетона и фиксируют образуемую при ударе энергию. Точность искомых значений с помощью техники ударного импульса относительно невысокая;
  • метод упругого отскока. Проводится стекломером, который измеряет путь бойка при ударе о бетон;
  • способ пластического отскока. Состоит в сравнении образующего вследствие удара металлическим шаром размеров следа с эталонным отпечатком. На практике применяется наиболее часто, проводится молотком Кашкарова, в корпус которого помещается стальной стержень.

Основные характеристики контроля прочности ударным методом, отрывом и другими неразрушающими способами приведены в таблице.

Результаты испытаний.

Результат измерений оказывает влияние на возможность эксплуатации конструкции с заданной проектной нагрузкой — при выявлении низкой прочности разрабатываются и реализуются меры по укреплению конструкции. Бетон в этом случае обрабатывается паром, поливается водой до получения необходимых показателей прочности на сжатие.

Цена бетона марки М300 отражает его прочностные характеристики и назначается поставщиком только после проведения собственных испытаний. Строительная организация проводит собственные испытания, так как в процессе перевозки раствор может частично изменить свойства. Для точного определения пригодности бетонного раствора его испытывают на растяжение, деформации, морозостойкость и водонепроницаемость.

Устройство и принцип работы

Конструкции большинства склерометров состоят из следующих элементов:

  • плунжер ударного типа, индентор;
  • корпус;
  • ползунки, что оснащены стержнями для направления;
  • конус в основе;
  • кнопки стопора;
  • штоки, что обеспечивает направленность функционирования молотка;
  • колпачки;
  • кольца разъема;
  • задняя крышка прибора;
  • пружина со сжимающими свойствами;
  • предохраняющие элементы конструкций;
  • бойки с определенным весом;
  • пружины с фиксирующими свойствами;
  • ударяющие элементы пружин;
  • втулка, что направляет функционирование склерометра;
  • войлочные кольца;
  • индикаторы шкалы;
  • винты, что осуществляют процесс сцепки;
  • гайки контроля;
  • штифты;
  • пружины предохранения.

Функционирование склерометра имеет основу в виде отскока, характеризующегося упругостью, что формируется при измерениях импульса удара, который возникает в конструкциях при их нагрузке. Устройство измерителя произведено так, что после осуществления ударных действий об бетон пружинная система дает ударнику возможность сделать свободный отскок. Градуированная шкала, вмонтированная на приборе, вычисляет искомый показатель.

молоток шмидта инструкция по применению .

Молоток Шмидта – проверяем бетон на прочность без лаборатории.

Нажми для просмотра

Здравствуй те. В сегодняшне м выпуске решили рассказать Вам о таком измеритель ном приборе, как молоток…
 
 
 
Тэги:
 
Молоток Шмидта 225А для измерения прочности бетона. Склерометр – краткая инструкция

Нажми для просмотра

Демонстрац ия работы с молотком Шмидта при измерении прочности бетонных изделий и бетонной стяжки пола.
 
 
 
Тэги:
 
Автоматический измеритель прочности бетона ОНИКС-1.ОС.060Э

Нажми для просмотра

Видео по применению автоматиче ского измерителя прочности бетона методом отрыва со скалывание м ОНИКС-1….
 
 
 
Тэги:
 
Измеритель прочности бетона ОНИКС-1.ОС

Нажми для просмотра

Видео по применению измерителя прочности бетона методом отрыва со скалывание м ОНИКС-1.ОС Подробная.. .
 
 
 
Тэги:
 
Видеоотчёт №8. Молоток Шмидта ОМШ-1Э

Нажми для просмотра

Николай коротко рассказыва ет о применение склерометр а на объектах строительс тва.
 
 
 
Тэги:
 
Проверка прочности бетона, склерометр. Молоток Шмидта

Нажми для просмотра

На видео показан процесс проверки прочности бетона профессион альным прибором – молоток Шмидта или еще…
 
 
 
Тэги:
 
Применение измерителя прочности бетона(склерометр) ИПС-МГ4.04

Нажми для просмотра

Подробная информация о данном приборе: Утвержден тип …
 
 
 
Тэги:
 
Для контроля набора прочности бетона в ПСК ЭНЕРГИЯ используют Молоток Кашкарова

Нажми для просмотра

Для контроля набора прочности бетона в ПСК ЭНЕРГИЯ используют Молоток Кашкарова.
 
 
 
Тэги:
 
Применение измерителя прочности бетона ПОС-50МГ4

Нажми для просмотра

Подробная информация о данном приборе: Утвержден …
 
 
 
Тэги:
 
Как измерить прочность бетона? Как проверить прочность бетона фундамента? Молоток Шмидта

Нажми для просмотра

Рассказыва ем, как измерить прочность бетона с помощью молотка Шмидта – это неразрушаю щий способ провер…
 
 
 
Тэги:
 
Склерометр RGK SK 60

Нажми для просмотра

Склерометр RGK SK-60 предназнач ен для определени я прочности на сжатие строительн ых материалов (бетона, камня…
 
 
 
Тэги:
 
Молоток Шмидта Original SCHMIDT Тип L
BM: Марка и класс бетона – в чем разница?

Нажми для просмотра

В видео рассказыва ется о двух важнейших характерис тиках бетона, его марке и классе, а также подробно разъяс…
 
 
 
Тэги:
 
Как проверить качество бетона?

Нажми для просмотра

Как проверить качество бетона подручными средствами ?
 
 
 
Тэги:
 
Concrete Test Hammers: Schmidt Rebound Hammer Portfolio from Proceq

Нажми для просмотра

The concrete test hammer invented by Ernst Schmidt and introduced by Proceq at the beginning of the 1950’s remains to this day …
 
 
 
Тэги:
 
Original Schmidt Live Молоток для контроля прочности бетона обзор отзывы

Нажми для просмотра

*Звоните по тел: 8-800-505-45-20, .. .
 
 
 
Тэги:
 
Склерометр RGK SK-60 (обзор)

Нажми для просмотра

Подробное описание и технически е характерис тики: Наша группа ВКонтакте: https …
 
 
 
Тэги:
 
Измеритель прочности бетона ударно-импульсный (склерометр) ОНИКС-2

Нажми для просмотра

Видео по применению склерометр ов серии ОНИКС-2 Подробная информация о приборе на нашем сайте: …
 
 
 
Тэги:
 
Молоток для контроля бетона SilverSchmidt/молоток Шмидта

Нажми для просмотра

molotok-dlya-kontrol ya-betona-silverschm idt-molotok Молоток для контроля бетона …
 
 
 
Тэги:
 
Молоток Кашкарова у студентов

Нажми для просмотра

Молоток Кашкарова.
 
 
 
Тэги:
 
Замер прочности бетона. Молоток Шмидта . Измеритель прочности бетона Проверка бетона. Русский Дворъ.

Нажми для просмотра

Проекты коттеджей – =================== ==================== ======== Наш …
 
 
 
Тэги:
 
Проверка бетона на набор прочности прибором

Нажми для просмотра

Бетон Про Контроль&quo t; прибор для измерения прочности бетона. Замер был произведен спустя 4 месяца после прием…
 
 
 
Тэги:
 
Молоток Шмидта SilverSchmidt PC N для испытания бетона

Технологии неразрушающего контроля прочности бетона

Все существующие технологии неразрушающего контроля, регламентированные ГОСТ 22690-2015 основаны на механическом воздействии на поверхность бетона. В отличие от проверки прочности по методике разрушения образцов, технологии неразрушающего контроля являются косвенными.

Фактическую прочность материала определяют по специальным таблицам, составленным на основе эмпирических данных. Отдельной строкой идет технология определения прочности с помощью ультразвуковых волн по ГОСТ 17624-2012.

В этом случае используются специальный прибор, излучающий ультразвуковые волны и измеряющий время и скорость их распространения в толще бетона. Истинную прочность материала определяют по экспериментально установленным зависимостям. Использование показывающих (прочность материала) приборов, действующим ГОСТом не допускается. Это наиболее точный метод неразрушающего контроля.

Виды испытаний бетона неразрушающим методом ГОСТ 22690-2015:

  • Упругий отскок. Измеряется значение величины обратного отскока средства измерения после удара о поверхность испытуемой конструкции. Для измерения величины отскока применяют склерометр Шмидта и его аналоги. Количество измерений на участке поверхности для расчета средней величины – 9. Минимальная толщина бетона – 0,1м.
  • Пластическая деформация. Измеряются габариты следа от шарика, образовавшегося после удара рабочей частью молотком Кашкарова. Самый простой и дешевый метод. Количество измерений – 5. Минимальная толщина конструкции, при которой разрешено определять прочность данным методом – 0,07 м.
  • Ударный импульс. Измеряется значение величины энергии удара в момент удара бойка средства измерения об испытуемую поверхность. Используются приборы: ИПС МГ 4.03, ОНИКС ОС, ОНИКС-2,5. Количество измерений – 10. Минимальная толщина конструкции – 0,05 м.
  • Отрыв образца. Измеряется сила напряжения отрыва стального диска приклеенного к бетону. Вследствие сложности технологии, в последнее время используется очень редко. Измерительное оборудование, приборы: ПОС-30-МГ4 и ПОС-50-МГ4. Количество измерений – 1. Минимальная толщина бетона 0,05 м.
  • Отрыв образца со скалыванием или скалывание ребра изделия. Измеряется числовое значение силы необходимой для скалывания кусочка ребра или вырыва специального анкера. Самое точное испытание бетона неразрушающим методом. Рекомендуется использовать приборы: ПОС-50МГ4 «Скол», ГПНВ-5, ГПНС-4. 2.6. Количество измерений – 1. Минимальная толщина конструкции – 0,05 м. Глубина заделки анкера: 30, 35, 40 и 48 мм в зависимости от прибора измерения.

Из чего состоит склерометр?

Термин «склерометр» означает «измеритель твердости». Конструктивно прибор состоит из 22 элементов. Кроме индентора (ударный плужнер) и корпуса прибор включает в себя:

  • конус корпуса;
  • направляющие стержни с ползунком;
  • кнопку, исполняющая функцию штопора;
  • боек с заданной массой;
  • направляющие движения индентора шток бойка;
  • шайбу для фиксации бойка;
  • колпачок;
  • заднюю крышку склерометра;
  • войлочное кольцо.

Некоторые модели доукомплектовывают предохранителем и контрольной гайкой, а также 4 пружинами (сжимающая, ударяющая, предохраняющая, фиксирующая). Обязательно присутствуют сцепляющий винт, штифт, шкала Шмидта, дисплей.

Источник

Классификация методов контроля прочности бетона

Исследования прочности бетона должны выполняться по требованиям ГОСТ 28570 , , , ГОСТ Р 53231 (вышел новый ГОСТ 18105), СТО . Условно все применяемые методы можно разделить на 3 группы, представленные на рис. 1.

Рисунок 1. Классификация методов контроля прочности бетона

Результаты, полученные методами первой группы, являются наиболее соответствующими истинному значению прочности материала по следующим причинам. Во-первых, измеряется именно искомый параметр – усилие, соответствующее разрушению при сжатии. Во-вторых, исследуется образец материала, изъятый из тела конструкции, а не только из поверхностного слоя. В-третьих, влияние на результат измерения внешних факторов: влажность, армирование, дефекты поверхностного слоя и прочих, – можно свести к минимуму.

Однако данный подход для рядовых объектов на практике применяется крайне редко. Это обусловлено тремя основными причинами: высокая стоимость оборудования, большая трудоемкость процесса измерения и, следовательно, его себестоимость и локальное повреждение конструкций, которое в большинстве случаев заказчик не приемлет.

Подсчитаем оценочную стоимость необходимого для первого вида измерений оборудования. Учитывая, что метод выбуривания кернов по сравнению с отбором проб выпиливанием характеризуется меньшей трудоемкостью и повреждением, наносимым конструкции, рассмотрим оборудование именно для него. Рассмотрим комплект оборудования, доступного на рынке, со средним качеством и минимальными необходимыми параметрами. В минимальный комплект можно включить: перфоратор (Bosch GBH 2-26), установка алмазного сверления для отбора кернов диаметром до 100 мм (Husqvarna DMS 160A), камнерезный станок (Diam SK-600) и пресс гидравлический (ПГМ-1000МГ4). Данные сведены в таблицу 1.

Трудозатраты для выполнения измерений будут состоять из выбуривания трех кернов (согласно п.СП13-102 для определения прочности одного конструктивного элемента), доставки с объекта в лабораторию (в расчет взят 1 ч), торцовки на камнерезном станке и испытания на прессе с последующей обработкой результатов.

Для всех методов контроля, указанных на рис. 1, по требованиям ГОСТов необходимо до выполнения измерений (отбора проб) определить наличие и расположение арматуры (для этого использовался измеритель защитного слоя бетона ИПА-МГ4.01). Данная операция, как правило, выполняется магнитным методом по ГОСТ 22904 . Эта составляющая в затраты на приборное обеспечение и трудоемкость не включена.

Подсчитаем оценочную стоимость необходимого для второго вида измерений оборудования. Расчет выполнен для метода отрыва со скалыванием, так как в отличие от методов отрыва и скалывания ребра, данный метод в отечественной практике обследования нашел наибольшее применение.

Основные требования к проверке прочности

Согласно требованиям, изложенным в СП 13-102-2003, выборку бетона для исследования косвенным и прямым методами необходимо выполнять более чем на 30 участках, однако, этого недостаточно для построения и использования градуировочной зависимости.

Еще необходимо, чтобы зависимость, полученная парным корреляционно-регрессивным исследованием, имела коэффициент корреляции не меньше 0,7, а также среднеквадратическое отклонение составляло менее 15 процентов средней прочности. Для выполнения этих условий, точность измерений должна быть очень высокой, при этом прочность бетона должна меняться в широком диапазоне.

Надо сказать, что при исследовании конструкций, эти условия соблюдаются довольно редко. Дело в том, что базовый метод испытаний сопровождается значительной погрешностью.

Кроме того, прочность бетона на поверхности может отличаться от прочности на некоторой глубине. Однако, если бетонирование выполнено качественно и бетон соответствует своему проектному классу, то параметры однотипных конструкций не меняются в широком диапазоне.

Чтобы определить прочность без нарушения действующих норм, следует воспользоваться прямыми неразрушающими или разрушающими способами.

По ГОСТ 22690-88 к прямым способам относятся:

  • Метод отрыва;
  • Отрыв бетона со скалыванием;
  • Скалывание ребра.

Теперь подробней рассмотрим наиболее распространенные технологии определения качества бетона.

Анкерное устройство для испытания бетона

Виды способов проверки прочности

Наиболее достоверным способом контроля качества бетона является испытание бетонной конструкции, после того, как материал наберет свою проектную прочность.

Что касается испытания отдельно выполненных контрольных образцов, то оно позволяет определить лишь качество бетонной смеси, но не прочности материала в конструкции. Связано это с невозможностью обеспечение одинаковых условий набора прочности опытного образца (вибрирование, нагрев и пр.) и бетонного изделия.

Все существующие методы контроля подразделяются на три группы:

  • Прямые неразрушающие;
  • Разрушающие;
  • Косвенные неразрушающие.

Нередко используют неразрушающие способы контроля, однако, чаще всего работу выполняют косвенными методами. К последней группе относится испытание контрольных образцов, а также образцов отобранных из бетонной конструкции.

Определение прочности на сжатие гидравлическим прессом

Надо сказать, что разрушающие способы также широко распространены в строительстве, однако применяют их реже, так как они нарушают целостность конструкции. Кроме того, цена таких испытаний очень высокая.

Поэтому на сегодняшний день наиболее распространенными являются следующие методы определения прочности:

  • Способ упругого отскока;
  • Ультразвуковой метод;
  • Способ ударного импульса.

Надо сказать, что разные способы проверки имеют разную погрешность:

Название способаПогрешность измеренияДиапазон использования МПа
Ударный импульс±50%10-70
Пластическая деформация±30-40%5-50
ОтрывДанные отсутствуют5-60
Упругий отскок±50%5-50
Скалывание ребраДанные отсутствуют10-70
Отрыв со скалываниемДанные отсутствуют5-100
Ультразвуковой метод±30-50%10-40

Как правильно проводить исследование?

Каждый молоток Кашкарова продается в комплекте с инструкцией по применению, в которой четко описано, как правильно применять данный измерительный инструмент. Чтобы проверить прочность бетона при помощи молотка Кашкарова, вам требуется выбрать участок бетонного объекта размером 10х10 см. Он должен быть ровным, без выемок и бугорков, должны отсутствовать видимые поры. Отступ от края изделия должен составлять более 5 см.

Нужно взять молоток Кашкарова, вставить в соответствующий паз эталонный стержень острым концом внутрь. На выбранный участок бетона следует уложить чистый листок бумаги и кусочек «копирки». Затем нужно ударить молотком по заготовке, как описано выше. После каждого удара следует продвигать эталон на новый участок и заменять лист бумаги. Следующий удар должен приходиться на новое место (на расстоянии от предыдущего более 3 см).

На следующем шаге нужно замерить отпечатки. Если разница полученных показателей составляет более 12%, следует все исследования повторить заново. Исходя из полученных показателей определяется класс бетона, при этом выбирается наименьший из получившихся показателей.

На результат исследования пониженные температуры воздуха практически не оказывают влияния. Поэтому использовать данный измерительный инструмент разрешено при температуре окружающей среды до -20 градусов. Однако при этом температурные показатели бетона и эталонных стержней должны быть одинаковыми. Это значит, что перед исследованием, проводимым на морозе, эталонные стержни необходимо оставить на улице как минимум на 12 часов.

Механические методы исследования показателей бетонной смеси

Таблица видов бетона.

Самый старый и популярный способ определения прочности материала на сжатие называется методом стандартных образцов. Для проведения исследования из бетонной смеси изготавливаются контрольные образцы, представляющие собой кубы с длиной сторон в 20 см. Для проведения испытаний кубы должны иметь срок выдержки не менее 28 дней. Затем готовые образцы устанавливаются под пресс и сжимаются до полного разрушения. Показатели нагрузки, при которых произошло разрушение, фиксируются, а затем с их помощью осуществляется расчет прочности монолита.

Неразрушающий контроль бетона производится специальными механическими приспособлениями. При этом используются методы, определяющие свойства монолита при воздействии на него определенными инструментами. Учитываются показания приборов при таких манипуляциях, как скалывание, отрыв, пластическая деформация и некоторые другие.

Методы проверки бетона при помощи молотков Физделя и Кашкарова

Принцип действия испытательных механизмов основан на показателях глубины попадания прибора в толщу поверхностного слоя бетонного монолита. В качестве примера можно рассмотреть молоток Физделя, при ударах которым на поверхности материала остаются лунки. Диаметры лунок и определяют прочностные характеристики бетона.

Устройство молотка Кашкарова.

Затем осуществляются 10-12 средних по силе ударов по поверхности участка, выбранного для испытания. Отпечатки от молотка должны находиться на расстоянии не менее 3 см друг от друга.

После этого при помощи штангенциркуля и специальной линейки производятся измерения диаметров лунок. Каждое измерение производится с точностью до десятых долей миллиметра сначала в одном направлении лунки, затем в строго перпендикулярном. На основании полученных сведений и данных о диаметре отпечатков лабораторных образцов, взятых за стандарт, составляется тарировочная кривая, позволяющая произвести определение прочности бетона на сжатие.

Кроме того, определить прочностные характеристики монолита можно и при помощи молотка Кашкарова. Принцип действия данного инструмента так же, как и молотка Физделя, основан на свойствах пластической деформации. Конструкционно молоток Кашкарова представляет собой прибор, в который, кроме рабочего органа, введен и контрольный стержень. За счет этого прибор оставляет не одинарный, а двойной отпечаток. Один располагается на поверхности исследуемого объекта, а другой — на контрольном стержне. Анализ отпечатков и оставленных диаметров лунок позволяет произвести расчеты прочности бетона на сжатие.

Исследования свойства бетона при помощи склерометра и пистолетов

Таблица соотношения прочности бетона.

Инструменты, которые применяются для определения прочностных характеристик бетонного монолита на основании свойств упругого отскока, оснащены стержневым ударником, или бойком. Примером таким инструментов могут служить пистолеты Борового и ЦНИИСКа, склерометр КМ и молоток Шмидта.

Исследования определяют величину силы отскока ударника, которая при испытаниях отражается на шкале механизма. Как правило, сила энергии пружины при опыте должна иметь постоянное значение.

Спуск стержневого ударника производится самостоятельно при соприкосновении инструмента с поверхностью. В склерометр КМ встроен боек, имеющий определенное значение массы. При помощи пружины, которой задана жесткость, производится удар по ударнику из металла, прижатому к испытываемой поверхности.

Методы контроля прочности бетона, основанные на показателях отрыва со скалыванием, позволяют определить характеристики монолита не на поверхности, а в теле элемента. Для исследований используются участки, лишенные металлической арматуры.

Методы установления прочности бетона.

В толщу бетона устанавливаются специальные анкеры, при помощи которых затем производится исследование прочностных характеристик бетона неразрушающим способом.

На сегодняшний день описанные методы неразрушающего контроля прочности бетона считаются самыми точными, так как используют для расчетов зависимость, в которой могут изменяться всего лишь 2 параметра: величину фракций наполнителя бетонного раствора и его тип. При этом недостатками неразрушающего контроля прочности бетона является высокая трудоемкость в комплексе с невозможностью использования данных методов при высокой армированности материала. Кроме того, при испытаниях происходит частичное повреждение поверхности исследуемого монолита.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий